yacy_search_server/source/de/anomic/ymage/ymageMatrix.java
orbiter bea3b99aff moved table and util classes
git-svn-id: https://svn.berlios.de/svnroot/repos/yacy/trunk@6397 6c8d7289-2bf4-0310-a012-ef5d649a1542
2009-10-10 01:14:19 +00:00

747 lines
30 KiB
Java

// ymageMatrix.java
// (C) 2005 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
// first published 16.09.2005 on http://yacy.net
//
// This is a part of YaCy, a peer-to-peer based web search engine
//
// $LastChangedDate: 2006-04-02 22:40:07 +0200 (So, 02 Apr 2006) $
// $LastChangedRevision: 1986 $
// $LastChangedBy: orbiter $
//
// LICENSE
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/*
This Class implements some convenience-methods to support drawing of statistical Data
It is not intended to replace existing awt-funktions even if it looks so
This class provides some drawing methods that creates transparency effects that
are not available in awt.
*/
package de.anomic.ymage;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.awt.image.WritableRaster;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.ArrayList;
import javax.imageio.ImageIO;
import net.yacy.kelondro.util.ByteBuffer;
import net.yacy.kelondro.util.MemoryControl;
public class ymageMatrix {
// colors regarding RGB Color Model
public static final long RED = 0xFF0000;
public static final long GREEN = 0x00FF00;
public static final long BLUE = 0x0000FF;
public static final long GREY = 0x888888;
public static final byte MODE_REPLACE = 0;
public static final byte MODE_ADD = 1;
public static final byte MODE_SUB = 2;
public static final byte FILTER_ANTIALIASING = 0;
public static final byte FILTER_BLUR = 1;
public static final byte FILTER_INVERT = 2;
protected int width, height;
private final BufferedImage image;
private final WritableRaster grid;
private final int[] defaultCol;
private final long backgroundCol;
private final byte defaultMode;
public ymageMatrix(final int width, final int height, final byte drawMode, final String backgroundColor) {
this(width, height, drawMode, Long.parseLong(backgroundColor, 16));
}
public ymageMatrix(final int width, final int height, final byte drawMode, final long backgroundColor) {
if (!(MemoryControl.request(1024 * 1024 + 3 * width * height, false))) throw new RuntimeException("ymage: not enough memory (" + MemoryControl.available() + ") available");
this.width = width;
this.height = height;
this.backgroundCol = backgroundColor;
this.defaultCol = new int[]{0xFF, 0xFF, 0xFF};
this.defaultMode = drawMode;
this.image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
//this.image = imageFromPool(width, height, 1000);
this.clear();
this.grid = image.getRaster();
}
public void clear() {
// fill grid with background color
int bgR, bgG, bgB;
/*if (drawMode == MODE_SUB) {
bgR = (int) (0xFF - (this.backgroundCol >> 16));
bgG = (int) (0xFF - ((this.backgroundCol >> 8) & 0xff));
bgB = (int) (0xFF - (this.backgroundCol & 0xff));
} else {*/
bgR = (int) (this.backgroundCol >> 16);
bgG = (int) ((this.backgroundCol >> 8) & 0xff);
bgB = (int) (this.backgroundCol & 0xff);
//}
final Graphics2D gr = image.createGraphics();
gr.setBackground(new Color(bgR, bgG, bgB));
gr.clearRect(0, 0, width, height);
/*
int[] c = new int[]{bgR, bgG, bgB};
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
grid.setPixel(i, j, c);
}
}
*/
}
public BufferedImage getImage() {
return this.image;
}
public int getWidth() {
return width;
}
public int getHeight() {
return height;
}
public void setColor(final long c) {
if (this.defaultMode == MODE_SUB) {
final int r = (int) (c >> 16);
final int g = (int) ((c >> 8) & 0xff);
final int b = (int) (c & 0xff);
defaultCol[0] = (g + b) >>> 1; // / 2;
defaultCol[1] = (r + b) >>> 1; // / 2;
defaultCol[2] = (r + g) >>> 1; // / 2;
} else {
defaultCol[0] = (int) (c >> 16);
defaultCol[1] = (int) ((c >> 8) & 0xff);
defaultCol[2] = (int) (c & 0xff);
}
}
public void setColor(final String s) {
setColor(Long.parseLong(s, 16));
}
public void plot(final int x, final int y) {
plot (x, y, 100);
}
private final int[] cc = new int[3];
public void plot(final int x, final int y, final int intensity) {
if ((x < 0) || (x >= width)) return;
if ((y < 0) || (y >= height)) return;
synchronized (cc) {
if (this.defaultMode == MODE_REPLACE) {
if (intensity == 100) {
cc[0] = defaultCol[0];
cc[1] = defaultCol[1];
cc[2] = defaultCol[2];
} else {
int[] c = new int[3];
c = grid.getPixel(x, y, c);
cc[0] = (intensity * defaultCol[0] + (100 - intensity) * c[0]) / 100;
cc[1] = (intensity * defaultCol[1] + (100 - intensity) * c[1]) / 100;
cc[2] = (intensity * defaultCol[2] + (100 - intensity) * c[2]) / 100;
}
} else if (this.defaultMode == MODE_ADD) {
int[] c = new int[3];
c = grid.getPixel(x, y, c);
if (intensity == 100) {
cc[0] = (0xff & c[0]) + defaultCol[0]; if (cc[0] > 255) cc[0] = 255;
cc[1] = (0xff & c[1]) + defaultCol[1]; if (cc[1] > 255) cc[1] = 255;
cc[2] = (0xff & c[2]) + defaultCol[2]; if (cc[2] > 255) cc[2] = 255;
} else {
cc[0] = (0xff & c[0]) + (intensity * defaultCol[0] / 100); if (cc[0] > 255) cc[0] = 255;
cc[1] = (0xff & c[1]) + (intensity * defaultCol[1] / 100); if (cc[1] > 255) cc[1] = 255;
cc[2] = (0xff & c[2]) + (intensity * defaultCol[2] / 100); if (cc[2] > 255) cc[2] = 255;
}
} else if (this.defaultMode == MODE_SUB) {
int[] c = new int[3];
c = grid.getPixel(x, y, c);
if (intensity == 100) {
cc[0] = (0xff & c[0]) - defaultCol[0]; if (cc[0] < 0) cc[0] = 0;
cc[1] = (0xff & c[1]) - defaultCol[1]; if (cc[1] < 0) cc[1] = 0;
cc[2] = (0xff & c[2]) - defaultCol[2]; if (cc[2] < 0) cc[2] = 0;
} else {
cc[0] = (0xff & c[0]) - (intensity * defaultCol[0] / 100); if (cc[0] < 0) cc[0] = 0;
cc[1] = (0xff & c[1]) - (intensity * defaultCol[1] / 100); if (cc[1] < 0) cc[1] = 0;
cc[2] = (0xff & c[2]) - (intensity * defaultCol[2] / 100); if (cc[2] < 0) cc[2] = 0;
}
}
grid.setPixel(x, y, cc);
}
}
public void line(int Ax, int Ay, final int Bx, final int By) {
// Bresenham's line drawing algorithm
int dX = Math.abs(Bx-Ax);
int dY = Math.abs(By-Ay);
int Xincr, Yincr;
if (Ax > Bx) Xincr=-1; else Xincr=1;
if (Ay > By) Yincr=-1; else Yincr=1;
if (dX >= dY) {
final int dPr = dY<<1;
final int dPru = dPr - (dX<<1);
int P = dPr - dX;
for (; dX>=0; dX--) {
plot(Ax, Ay);
if (P > 0) {
Ax+=Xincr;
Ay+=Yincr;
P+=dPru;
} else {
Ax+=Xincr;
P+=dPr;
}
}
} else {
final int dPr = dX<<1;
final int dPru = dPr - (dY<<1);
int P = dPr - dY;
for (; dY>=0; dY--) {
plot(Ax, Ay);
if (P > 0) {
Ax+=Xincr;
Ay+=Yincr;
P+=dPru;
} else {
Ay+=Yincr;
P+=dPr;
}
}
}
}
public void lineDot(final int x0, final int y0, final int x1, final int y1, final int radius, final int distance, final long lineColor, final long dotColor) {
// draw a line with a dot at the end.
// the radius value is the radius of the dot
// the distance value is the distance of the dot border to the endpoint
// compute first the angle of the line between the points
final double angle = (x1 - x0 > 0) ? Math.atan(((double) (y0 - y1)) / ((double) (x1 - x0))) : Math.PI - Math.atan(((double) (y0 - y1)) / ((double) (x0 - x1)));
// now find two more points in between
// first calculate the radius' of the points
final double ra = Math.sqrt(((x0 - x1) * (x0 - x1) + (y0 - y1) * (y0 - y1))); // from a known point x1, y1
final double rb = ra - radius - distance;
final double rc = rb - radius;
//System.out.println("CONTROL angle = " + angle);
//System.out.println("CONTROL x1 = " + x1 + ", x1calc = " + ((x0 + ((int) ra * Math.cos(angle)))));
//System.out.println("CONTROL y1 = " + y1 + ", y1calc = " + ((y0 - ((int) ra * Math.sin(angle)))));
// the points are on a circle with radius rb and rc
final int x2 = x0 + ((int) (rb * Math.cos(angle)));
final int y2 = y0 - ((int) (rb * Math.sin(angle)));
final int x3 = x0 + ((int) (rc * Math.cos(angle)));
final int y3 = y0 - ((int) (rc * Math.sin(angle)));
setColor(lineColor);
line(x0, y0, x3, y3);
setColor(dotColor);
dot(x2, y2, radius, true);
}
public int[] getColor(final int x, final int y) {
final int[] c = new int[3];
return grid.getPixel(x, y, c);
}
public void dot(final int x, final int y, final int radius, final boolean filled) {
if (filled) {
for (int r = radius; r >= 0; r--) ymageToolCircle.circle(this, x, y, r);
} else {
ymageToolCircle.circle(this, x, y, radius);
}
}
public void arc(final int x, final int y, final int innerRadius, final int outerRadius, final int fromArc, final int toArc) {
for (int r = innerRadius; r <= outerRadius; r++) ymageToolCircle.circle(this, x, y, r, fromArc, toArc);
}
public void arcLine(final int cx, final int cy, final int innerRadius, final int outerRadius, final int angle) {
final int xi = cx + (int) (innerRadius * Math.cos(Math.PI * angle / 180));
final int yi = cy - (int) (innerRadius * Math.sin(Math.PI * angle / 180));
final int xo = cx + (int) (outerRadius * Math.cos(Math.PI * angle / 180));
final int yo = cy - (int) (outerRadius * Math.sin(Math.PI * angle / 180));
line(xi, yi, xo, yo);
}
public void arcDot(final int cx, final int cy, final int arcRadius, final int angle, final int dotRadius) {
final int x = cx + (int) (arcRadius * Math.cos(Math.PI * angle / 180));
final int y = cy - (int) (arcRadius * Math.sin(Math.PI * angle / 180));
dot(x, y, dotRadius, true);
}
public void arcArc(final int cx, final int cy, final int arcRadius, final int angle, final int innerRadius, final int outerRadius, final int fromArc, final int toArc) {
final int x = cx + (int) (arcRadius * Math.cos(Math.PI * angle / 180));
final int y = cy - (int) (arcRadius * Math.sin(Math.PI * angle / 180));
arc(x, y, innerRadius, outerRadius, fromArc, toArc);
}
/**
* inserts an image into the ymageMatrix
* @param bitmap the bitmap to be inserted
* @param x the x value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param y the y value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @author Marc Nause
*/
public void insertBitmap(final BufferedImage bitmap, final int x, final int y) {
insertBitmap(bitmap, x, y, -1);
}
/**
* inserts an image into the ymageMatrix
* @param bitmap the bitmap to be inserted
* @param x the x value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param y the y value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param filter chooses filter
* @author Marc Nause
*/
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final byte filter) {
insertBitmap(bitmap, x, y, -1, filter);
}
/**
* inserts an image into the ymageMatrix where all pixels that have the same RGB value as the
* pixel at (xx, yy) are transparent
* @param bitmap the bitmap to be inserted
* @param x the x value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param y the y value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param xx the x value of the pixel that determines which color is transparent
* @param yy the y value of the pixel that determines which color is transparent
* @author Marc Nause
*/
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int xx, final int yy) {
insertBitmap(bitmap, x, y, bitmap.getRGB(xx, yy));
}
/**
* inserts an image into the ymageMatrix where all pixels that have the same RGB value as the
* pixel at (xx, yy) are transparent
* @param bitmap the bitmap to be inserted
* @param x the x value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param y the y value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param xx the x value of the pixel that determines which color is transparent
* @param yy the y value of the pixel that determines which color is transparent
* @param filter chooses filter
* @author Marc Nause
*/
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int xx, final int yy, final byte filter) {
insertBitmap(bitmap, x, y, bitmap.getRGB(xx, yy), filter);
}
/**
* inserts an image into the ymageMatrix where all pixels that have a special RGB value
* pixel at (xx, yy) are transparent
* @param bitmap the bitmap to be inserted
* @param x the x value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param y the y value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param rgb the RGB value that will be transparent
* @author Marc Nause
*/
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int transRGB) {
final int heightSrc = bitmap.getHeight();
final int widthSrc = bitmap.getWidth();
final int heightTgt = height;
final int widthTgt = width;
int rgb;
for (int i = 0; i < heightSrc; i++) {
for (int j = 0; j < widthSrc; j++) {
// pixel in legal area?
if (j+x >= 0 && i+y >= 0 && i+y < heightTgt && j+x < widthTgt) {
rgb = bitmap.getRGB(j, i);
if (rgb != transRGB) {
image.setRGB(j+x, i+y, rgb);
}
}
}
}
}
/**
* inserts an image into the ymageMatrix where all pixels that have a special RGB value
* pixel at (xx, yy) are transparent
* @param bitmap the bitmap to be inserted
* @param x the x value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param y the y value of the upper left coordinate in the ymageMatrix where the bitmap will be placed
* @param rgb the RGB value that will be transparent
* @param filter chooses filter
* @author Marc Nause
*/
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int transRGB, final byte filter) {
insertBitmap(bitmap, x, y, transRGB);
final int bitmapWidth = bitmap.getWidth();
final int bitmapHeight = bitmap.getHeight();
if (filter == FILTER_ANTIALIASING) {
int transX = -1;
int transY = -1;
final int imageWidth = image.getWidth();
final int imageHeight = image.getHeight();
// find first pixel in bitmap that equals transRGB
// and also lies in area of image that will be covered by bitmap
int i = 0;
int j = 0;
final boolean found = false;
while ((i < bitmapWidth) && (i + x < imageWidth) && !found) {
while ((j < bitmapHeight) && (j + y < imageHeight) && !found) {
if (bitmap.getRGB(i, j) == transRGB) {
transX = i;
transY = j;
}
j++;
}
i++;
}
// if there is a transparent pixel in the bitmap that covers an area
// of the image, the fiter will be used. If no such pixel has been found that
// means that there either is no transparent pixel in the bitmap or part
// of the bitmap that covers part of tha image is not within the borders of
// the image (i.e. bitmap is larger than image)
if (transX != -1) {
filter(x - 1, y - 1, x + bitmapWidth, y + bitmapHeight, filter, image.getRGB(transX + x, transY + y));
}
} else {
filter(x - 1, y - 1, x + bitmapWidth, y + bitmapHeight, filter, -1);
}
}
/**
* antialiasing filter for a square part of the ymageMatrix
* @param lox x value for left upper coordinate
* @param loy y value for left upper coordinate
* @param rux x value for right lower coordinate
* @param ruy y value for right lower coordinate
* @param rgb color of background
* @author Marc Nause
*/
public void antialiasing(final int lox, final int loy, final int rux, final int ruy, final int bgcolor) {
filter(lox, loy, rux, ruy, FILTER_ANTIALIASING, bgcolor);
}
/**
* blur filter for a square part of the ymageMatrix
* @param lox x value for left upper coordinate
* @param loy y value for left upper coordinate
* @param rux x value for right lower coordinate
* @param ruy y value for right lower coordinate
* @author Marc Nause
*/
public void blur(final int lox, final int loy, final int rux, final int ruy) {
filter(lox, loy, rux, ruy, FILTER_BLUR, -1);
}
/**
* invert filter for a square part of the ymageMatrix
* @param lox x value for left upper coordinate
* @param loy y value for left upper coordinate
* @param rux x value for right lower coordinate
* @param ruy y value for right lower coordinate
* @author Marc Nause
*/
public void invert(final int lox, final int loy, final int rux, final int ruy) {
filter(lox, loy, rux, ruy, FILTER_INVERT, -1);
}
/**
* filter for a square part of the ymageMatrix
* @param lox x value for left upper coordinate
* @param loy y value for left upper coordinate
* @param rux x value for right lower coordinate
* @param ruy y value for right lower coordinate
* @param filter chooses filter
* @author Marc Nause
*/
private void filter(int lox, int loy, int rux, int ruy, final byte filter, final int bgcolor) {
// taking care that all values are legal
if (lox < 0) { lox = 0; }
if (loy < 0) { loy = 0; }
if (rux < 0) { rux = 0; }
if (ruy < 0) { ruy = 0; }
if (lox > width) { lox = width - 1; }
if (loy > height){ loy = height - 1; }
if (rux > width) { rux = width - 1; }
if (ruy > height){ ruy = height - 1; }
if (lox > rux) {
final int tmp = lox;
lox = rux;
rux = tmp;
}
if (loy > ruy) {
final int tmp = loy;
loy = ruy;
ruy = tmp;
}
int numberOfNeighbours = 0;
int rgbR = 0;
int rgbG = 0;
int rgbB = 0;
int rgb = 0;
final int width2 = rux - lox + 1;
final int height2 = ruy - loy + 1;
boolean border = false;
final BufferedImage image2 = new BufferedImage(width2, height2, BufferedImage.TYPE_INT_RGB);
for (int i = lox; i < rux + 1; i++) {
for (int j = loy; j < ruy + 1; j++) {
numberOfNeighbours = 0;
rgbR = 0;
rgbG = 0;
rgbB = 0;
if (filter == FILTER_ANTIALIASING || filter == FILTER_BLUR) {
// taking samples from neighbours of pixel
if (i > lox) {
rgb = image.getRGB(i - 1, j);
if (rgb == bgcolor) {
border = true;
}
rgbR += rgb >> 16 & 0xff;
rgbG += rgb >> 8 & 0xff;
rgbB += rgb & 0xff;
numberOfNeighbours++;
}
if (j > loy) {
rgb = image.getRGB(i, j - 1);
if (rgb == bgcolor) {
border = true;
}
rgbR += rgb >> 16 & 0xff;
rgbG += rgb >> 8 & 0xff;
rgbB += rgb & 0xff;
numberOfNeighbours++;
}
if (i < width - 1) {
rgb = image.getRGB(i + 1, j);
if (rgb == bgcolor) {
border = true;
}
rgbR += rgb >> 16 & 0xff;
rgbG += rgb >> 8 & 0xff;
rgbB += rgb & 0xff;
numberOfNeighbours++;
}
if (i < height - 1) {
rgb = image.getRGB(i, j + 1);
if (rgb == bgcolor) {
border = true;
}
rgbR += rgb >> 16 & 0xff;
rgbG += rgb >> 8 & 0xff;
rgbB += rgb & 0xff;
numberOfNeighbours++;
}
}
rgb = image.getRGB(i, j);
// add value of pixel
// in case filter is used for antialiasing this will only be done if
// the pixel is on the edge to the background color
if ((filter == FILTER_ANTIALIASING && border) || (filter == FILTER_BLUR)) {
rgbR += (rgb >> 16 & 0xff);
rgbG += (rgb >> 8 & 0xff);
rgbB += (rgb & 0xff);
numberOfNeighbours++;
border = false;
}
// set to value of pixel => keep value
else if (filter == FILTER_ANTIALIASING) {
rgbR = (rgb >> 16 & 0xff);
rgbG = (rgb >> 8 & 0xff);
rgbB = (rgb & 0xff);
numberOfNeighbours = 1;
}
// set value of pixel to inverted value (using XOR)
else if (filter == FILTER_INVERT) {
rgb = rgb ^ 0xffffff;
rgbR = (rgb >> 16 & 0xff);
rgbG = (rgb >> 8 & 0xff);
rgbB = (rgb & 0xff);
numberOfNeighbours = 1;
}
// calculating the average
rgbR = (rgbR / numberOfNeighbours);
rgbG = (rgbG / numberOfNeighbours);
rgbB = (rgbB / numberOfNeighbours);
rgb = (rgbR << 16) | (rgbG << 8) | rgbB;
image2.setRGB(i-lox, j-loy, rgb);
}
}
// insert new version of area into image
insertBitmap(image2, lox, loy);
}
public static void demoPaint(final ymageMatrix m) {
m.setColor(GREY);
m.line(0, 70, 100, 70); ymageToolPrint.print(m, 0, 65, 0, "Grey", -1);
m.line(65, 0, 65, 300);
m.setColor(RED);
m.line(0, 90, 100, 90); ymageToolPrint.print(m, 0, 85, 0, "Red", -1);
m.line(70, 0, 70, 300);
m.setColor(GREEN);
m.line(0, 110, 100, 110); ymageToolPrint.print(m, 0, 105, 0, "Green", -1);
m.line(75, 0, 75, 300);
m.setColor(BLUE);
m.line(0, 130, 100, 130); ymageToolPrint.print(m, 0, 125, 0, "Blue", -1);
m.line(80, 0, 80, 300);
}
/*
private static class imageBuffer {
protected BufferedImage image;
protected long access;
public imageBuffer(BufferedImage image) {
this.image = image;
this.access = System.currentTimeMillis();
}
public boolean sameSize(int width, int height) {
return (this.image.getWidth() == width) && (this.image.getHeight() == height);
}
public boolean olderThan(long timeout) {
return System.currentTimeMillis() - this.access > timeout;
}
}
private static final ArrayList imagePool = new ArrayList();
private static BufferedImage imageFromPool(int width, int height, long timeout) {
// returns an Image object from the image pool
// if the pooled Image was created recently (before timeout), it is not used
synchronized (imagePool) {
imageBuffer buffer;
for (int i = 0; i < imagePool.size(); i++) {
buffer = (imageBuffer) imagePool.get(i);
if ((buffer.sameSize(width, height)) && (buffer.olderThan(timeout))) {
// use this buffer
System.out.println("### using imageBuffer from pool " + i);
buffer.access = System.currentTimeMillis();
return buffer.image;
}
}
// no buffered image found, create a new one
buffer = new imageBuffer(new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB));
imagePool.add(buffer);
return buffer.image;
}
}
*/
private static class sbbBuffer {
protected ByteBuffer buffer;
protected int pixel;
protected long access;
public sbbBuffer(final int width, final int height) {
this.buffer = new ByteBuffer();
this.access = System.currentTimeMillis();
this.pixel = width * height;
}
public boolean enoughSize(final int width, final int height) {
return this.pixel >= width * height;
}
public boolean olderThan(final long timeout) {
return System.currentTimeMillis() - this.access > timeout;
}
}
private static final ArrayList<sbbBuffer> sbbPool = new ArrayList<sbbBuffer>();
private static ByteBuffer sbbFromPool(final int width, final int height, final long timeout) {
// returns an Image object from the image pool
// if the pooled Image was created recently (before timeout), it is not used
synchronized (sbbPool) {
sbbBuffer b;
for (int i = 0; i < sbbPool.size(); i++) {
b = sbbPool.get(i);
if ((b.enoughSize(width, height)) && (b.olderThan(timeout))) {
// use this buffer
b.access = System.currentTimeMillis();
b.buffer.clear(); // this makes only sense if the byteBuffer keeps its buffer
return b.buffer;
}
}
// no buffered image found, create a new one
b = new sbbBuffer(width, height);
sbbPool.add(b);
return b.buffer;
}
}
public static ByteBuffer exportImage(final BufferedImage image, final String targetExt) {
// generate an byte array from the given image
//serverByteBuffer baos = new serverByteBuffer();
final ByteBuffer baos = sbbFromPool(image.getWidth(), image.getHeight(), 1000);
try {
ImageIO.write(image, targetExt, baos);
return baos;
} catch (final IOException e) {
// should not happen
e.printStackTrace();
return null;
}
}
public static void main(final String[] args) {
// go into headless awt mode
System.setProperty("java.awt.headless", "true");
final ymageMatrix m = new ymageMatrix(200, 300, MODE_SUB, "FFFFFF");
demoPaint(m);
final File file = new File("/Users/admin/Desktop/testimage.png");
try {
final FileOutputStream fos = new FileOutputStream(file);
ImageIO.write(m.getImage(), "png", fos);
fos.close();
} catch (final IOException e) {}
// open file automatically, works only on Mac OS X
/*
Process p = null;
try {
p = Runtime.getRuntime().exec(new String[] {"/usr/bin/osascript", "-e", "open \"" + args[0] + "\""});
} catch (java.io.IOException e) {
e.printStackTrace();
}
try {
p.waitFor();
} catch (InterruptedException e) {
e.printStackTrace();
}
*/
}
}