yacy_search_server/source/net/yacy/kelondro/index/RAMIndex.java
orbiter 6388a58fc7 better memory management and slightly less (in total and temporary) RAM allocation:
- confirm that database objects that are not supposed to grow do not have a index memory management that is designed for growth
- changed index sorting method in such a way that it allocates less objects during quicksort
- database classes classes renaming (shorter, naming addresses that objects hold in RAM)
- added a large number of asserts to check if objects actually take the RAM that they should have


git-svn-id: https://svn.berlios.de/svnroot/repos/yacy/trunk@7019 6c8d7289-2bf4-0310-a012-ef5d649a1542
2010-08-04 13:33:12 +00:00

400 lines
14 KiB
Java

/**
* RAMIndex
* Copyright 2008 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
* First released 07.01.2008 at http://yacy.net
*
* $LastChangedDate: 2010-06-16 17:11:21 +0200 (Mi, 16 Jun 2010) $
* $LastChangedRevision: 6922 $
* $LastChangedBy: orbiter $
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program in the file lgpl21.txt
* If not, see <http://www.gnu.org/licenses/>.
*/
package net.yacy.kelondro.index;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import net.yacy.kelondro.index.Row.Entry;
import net.yacy.kelondro.order.CloneableIterator;
import net.yacy.kelondro.order.MergeIterator;
import net.yacy.kelondro.order.StackIterator;
public final class RAMIndex implements Index, Iterable<Row.Entry> {
private static final TreeMap<String, RAMIndex> objectTracker = new TreeMap<String, RAMIndex>();
private final String name;
private final Row rowdef;
private RowSet index0;
private RowSet index1;
private final Row.EntryComparator entryComparator;
//private final int spread;
public RAMIndex(String name, final Row rowdef, final int expectedspace) {
this.name = name;
this.rowdef = rowdef;
this.entryComparator = new Row.EntryComparator(rowdef.objectOrder);
//this.spread = Math.max(10, expectedspace / 3000);
reset();
objectTracker.put(name, this);
}
private RAMIndex(String name, final Row rowdef, RowSet index0, RowSet index1, Row.EntryComparator entryComparator) {
this.name = name;
this.rowdef = rowdef;
this.index0 = index0;
this.index1 = index1;
this.entryComparator = entryComparator;
objectTracker.put(name, this);
}
public static final Iterator<Map.Entry<String, RAMIndex>> objects() {
return objectTracker.entrySet().iterator();
}
public RAMIndex clone() {
return new RAMIndex(this.name + ".clone", this.rowdef, index0.clone(), index1.clone(), entryComparator);
}
public void clear() {
reset();
}
public void trim() {
if (this.index0 != null) this.index0.trim();
if (this.index1 != null) this.index1.trim();
}
public final synchronized void reset() {
this.index0 = null; // first flush RAM to make room
this.index0 = new RowSet(rowdef);
this.index1 = null; // to show that this is the initialization phase
}
public final synchronized void reset(final int initialspace) throws RowSpaceExceededException {
this.index0 = null; // first flush RAM to make room
this.index0 = new RowSet(rowdef, initialspace);
this.index1 = null; // to show that this is the initialization phase
}
public final Row row() {
return index0.row();
}
protected final void finishInitialization() {
if (index1 == null) {
// finish initialization phase
index0.sort();
index0.uniq();
index0.trim();
index1 = new RowSet(rowdef); //new RowSetArray(rowdef, spread);
}
}
public final synchronized byte[] smallestKey() {
final byte[] b0 = index0.smallestKey();
if (b0 == null) return null;
if (index1 == null) return b0;
final byte[] b1 = index0.smallestKey();
if (b1 == null || rowdef.objectOrder.compare(b1, b0) > 0) return b0;
return b1;
}
public final synchronized byte[] largestKey() {
final byte[] b0 = index0.largestKey();
if (b0 == null) return null;
if (index1 == null) return b0;
final byte[] b1 = index0.largestKey();
if (b1 == null || rowdef.objectOrder.compare(b0, b1) > 0) return b0;
return b1;
}
public final synchronized Row.Entry get(final byte[] key) {
assert (key != null);
finishInitialization();
assert index0.isSorted();
final Row.Entry indexentry = index0.get(key);
if (indexentry != null) return indexentry;
return index1.get(key);
}
public final synchronized boolean has(final byte[] key) {
assert (key != null);
finishInitialization();
assert index0.isSorted();
if (index0.has(key)) return true;
return index1.has(key);
}
public final synchronized Row.Entry replace(final Row.Entry entry) throws RowSpaceExceededException {
assert (entry != null);
finishInitialization();
// if the new entry is within the initialization part, just overwrite it
assert index0.isSorted();
final byte[] key = entry.getPrimaryKeyBytes();
if (index0.has(key)) {
// replace the entry
return index0.replace(entry);
}
// else place it in the index1
return index1.replace(entry);
}
public final synchronized void put(final Row.Entry entry) throws RowSpaceExceededException {
assert (entry != null);
if (entry == null) return;
finishInitialization();
// if the new entry is within the initialization part, just overwrite it
assert index0.isSorted();
final byte[] key = entry.getPrimaryKeyBytes();
if (index0.has(key)) {
// replace the entry
index0.put(entry);
}
// else place it in the index1
index1.put(entry);
}
public final synchronized void addUnique(final Row.Entry entry) throws RowSpaceExceededException {
assert (entry != null);
if (entry == null) return;
if (index1 == null) {
// we are in the initialization phase
index0.addUnique(entry);
return;
}
// initialization is over, add to secondary index
index1.addUnique(entry);
}
public final void addUnique(final List<Entry> rows) throws RowSpaceExceededException {
final Iterator<Entry> i = rows.iterator();
while (i.hasNext()) addUnique(i.next());
}
public final synchronized long inc(final byte[] key, final int col, final long add, final Row.Entry initrow) throws RowSpaceExceededException {
assert (key != null);
finishInitialization();
assert index0.isSorted();
final long l = index0.inc(key, col, add, null);
if (l != Long.MIN_VALUE) return l;
return index1.inc(key, col, add, initrow);
}
public final synchronized ArrayList<RowCollection> removeDoubles() throws RowSpaceExceededException {
// finish initialization phase explicitely
index0.sort();
if (index1 == null) {
return index0.removeDoubles();
}
final ArrayList<RowCollection> d0 = index0.removeDoubles();
final ArrayList<RowCollection> d1 = index1.removeDoubles();
d0.addAll(d1);
return d0;
}
public final synchronized boolean delete(final byte[] key) {
finishInitialization();
// if the new entry is within the initialization part, just delete it
boolean b = index0.delete(key);
if (b) {
assert index0.get(key) == null; // check if remove worked
return true;
}
// else remove it from the index1
b = index1.delete(key);
assert index1.get(key) == null : "removed " + ((b) ? " true" : " false") + ", and index entry still exists"; // check if remove worked
return b;
}
public final synchronized Row.Entry remove(final byte[] key) {
finishInitialization();
// if the new entry is within the initialization part, just delete it
int s = index0.size();
final Row.Entry indexentry = index0.remove(key);
if (indexentry != null) {
assert index0.size() < s: "s = " + s + ", index0.size() = " + index0.size();
assert index0.get(key) == null; // check if remove worked
return indexentry;
}
// else remove it from the index1
s = index1.size();
final Row.Entry removed = index1.remove(key);
assert removed == null || index1.size() < s: "s = " + s + ", index1.size() = " + index1.size();
assert index1.get(key) == null : "removed " + ((removed == null) ? " is null" : " is not null") + ", and index entry still exists"; // check if remove worked
return removed;
}
public final synchronized Row.Entry removeOne() {
if (index1 != null && !index1.isEmpty()) {
return index1.removeOne();
}
if (index0 != null && !index0.isEmpty()) {
return index0.removeOne();
}
return null;
}
public synchronized List<Row.Entry> top(int count) throws IOException {
List<Row.Entry> list = new ArrayList<Row.Entry>();
List<Row.Entry> list0 = index1.top(count);
list.addAll(list0);
list0 = index0.top(count - list.size());
list.addAll(list0);
return list;
}
public long mem() {
if (index0 != null && index1 == null) {
return index0.mem();
}
if (index0 == null && index1 != null) {
return index1.mem();
}
assert (index0 != null && index1 != null);
return index0.mem() + index1.mem();
}
public final synchronized int size() {
if (index0 != null && index1 == null) {
return index0.size();
}
if (index0 == null && index1 != null) {
return index1.size();
}
assert (index0 != null && index1 != null);
return index0.size() + index1.size();
}
public final synchronized boolean isEmpty() {
if (index0 != null && index1 == null) {
return index0.isEmpty();
}
if (index0 == null && index1 != null) {
return index1.isEmpty();
}
assert (index0 != null && index1 != null);
if (!index0.isEmpty()) return false;
if (!index1.isEmpty()) return false;
return true;
}
public final synchronized CloneableIterator<byte[]> keys(final boolean up, final byte[] firstKey) {
// returns the key-iterator of the underlying kelondroIndex
if (index1 == null) {
// finish initialization phase
index0.sort();
index0.uniq();
index1 = new RowSet(rowdef); //new RowSetArray(rowdef, spread);
return index0.keys(up, firstKey);
}
assert (index1 != null);
if (index0 == null) {
//assert consistencyAnalysis0() : "consistency problem: " + consistencyAnalysis();
return index1.keys(up, firstKey);
}
// index0 should be sorted
// sort index1 to enable working of the merge iterator
//assert consistencyAnalysis0() : "consistency problem: " + consistencyAnalysis();
final CloneableIterator<byte[]> k0 = index0.keys(up, firstKey);
final CloneableIterator<byte[]> k1 = index1.keys(up, firstKey);
if (k0 == null) return k1;
if (k1 == null) return k0;
return new MergeIterator<byte[]>(
k0,
k1,
rowdef.objectOrder,
MergeIterator.simpleMerge,
true);
}
public final synchronized CloneableIterator<Row.Entry> rows(final boolean up, final byte[] firstKey) {
// returns the row-iterator of the underlying kelondroIndex
if (index1 == null) {
// finish initialization phase
index0.sort();
index0.uniq();
index1 = new RowSet(rowdef); //new RowSetArray(rowdef, spread);
return index0.rows(up, firstKey);
}
assert (index1 != null);
if (index0 == null) {
//assert consistencyAnalysis0() : "consistency problem: " + consistencyAnalysis();
return index1.rows(up, firstKey);
}
// index0 should be sorted
// sort index1 to enable working of the merge iterator
//index1.sort();
//assert consistencyAnalysis0() : "consistency problem: " + consistencyAnalysis();
final CloneableIterator<Row.Entry> k0 = index0.rows(up, firstKey);
final CloneableIterator<Row.Entry> k1 = index1.rows(up, firstKey);
if (k0 == null) return k1;
if (k1 == null) return k0;
return new MergeIterator<Row.Entry>(
k0,
k1,
entryComparator,
MergeIterator.simpleMerge,
true);
}
public final Iterator<Entry> iterator() {
return rows();
}
public final synchronized CloneableIterator<Row.Entry> rows() {
// returns the row-iterator of the underlying kelondroIndex
if (index1 == null) {
// finish initialization phase
index0.sort();
index0.uniq();
index1 = new RowSet(rowdef); //new RowSetArray(rowdef, spread);
return index0.rows();
}
assert (index1 != null);
if (index0 == null) {
//assert consistencyAnalysis0() : "consistency problem: " + consistencyAnalysis();
return index1.rows();
}
// index0 should be sorted
// sort index1 to enable working of the merge iterator
//index1.sort();
//assert consistencyAnalysis0() : "consistency problem: " + consistencyAnalysis();
return new StackIterator<Row.Entry>(index0.rows(), index1.rows());
}
public final synchronized void close() {
if (index0 != null) index0.close();
if (index1 != null) index1.close();
objectTracker.remove(this.name);
}
public final String filename() {
return null; // this does not have a file name
}
public final void deleteOnExit() {
// do nothing, there is no file
}
}