yacy_search_server/source/net/yacy/kelondro/index/RowSet.java
orbiter 6388a58fc7 better memory management and slightly less (in total and temporary) RAM allocation:
- confirm that database objects that are not supposed to grow do not have a index memory management that is designed for growth
- changed index sorting method in such a way that it allocates less objects during quicksort
- database classes classes renaming (shorter, naming addresses that objects hold in RAM)
- added a large number of asserts to check if objects actually take the RAM that they should have


git-svn-id: https://svn.berlios.de/svnroot/repos/yacy/trunk@7019 6c8d7289-2bf4-0310-a012-ef5d649a1542
2010-08-04 13:33:12 +00:00

652 lines
25 KiB
Java

/**
* RowSet
* Copyright 2006 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
* First released 20.06.2006 at http://yacy.net
*
* $LastChangedDate$
* $LastChangedRevision$
* $LastChangedBy$
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program in the file lgpl21.txt
* If not, see <http://www.gnu.org/licenses/>.
*/
package net.yacy.kelondro.index;
import java.util.Iterator;
import java.util.Random;
import net.yacy.kelondro.logging.Log;
import net.yacy.kelondro.order.Base64Order;
import net.yacy.kelondro.order.CloneableIterator;
import net.yacy.kelondro.order.NaturalOrder;
public class RowSet extends RowCollection implements Index, Iterable<Row.Entry> {
private static final int collectionReSortLimit = 300;
public RowSet(final RowSet rs) {
super(rs);
}
public RowSet(final Row rowdef, final int objectCount, final byte[] cache, final int sortBound) {
super(rowdef, objectCount, cache, sortBound);
assert rowdef.objectOrder != null;
}
public RowSet(final Row rowdef, final int objectCount) throws RowSpaceExceededException {
super(rowdef, objectCount);
assert rowdef.objectOrder != null;
}
public RowSet(final Row rowdef) {
super(rowdef);
assert rowdef.objectOrder != null;
}
/**
* import an exported collection
* @param rowdef
* @param exportedCollectionRowEnvironment
* @param columnInEnvironment
*/
public RowSet(final Row rowdef, final Row.Entry exportedCollectionRowEnvironment) {
super(rowdef, exportedCollectionRowEnvironment);
assert rowdef.objectOrder != null;
}
public final static RowSet importRowSet(final byte[] b, final Row rowdef) {
assert b.length >= exportOverheadSize : "b.length = " + b.length;
if (b.length < exportOverheadSize) return new RowSet(rowdef);
final int size = (int) NaturalOrder.decodeLong(b, 0, 4);
assert size >= 0 : "size = " + size;
if (size < 0) return new RowSet(rowdef);
final int orderbound = (int) NaturalOrder.decodeLong(b, 10, 4);
assert orderbound >= 0 : "orderbound = " + orderbound;
if (orderbound < 0) return new RowSet(rowdef); // error
long alloc = ((long) size) * ((long) rowdef.objectsize);
assert alloc <= Integer.MAX_VALUE : "alloc = " + alloc;
final byte[] chunkcache = new byte[(int) alloc];
//assert b.length - exportOverheadSize == size * rowdef.objectsize : "b.length = " + b.length + ", size * rowdef.objectsize = " + size * rowdef.objectsize;
if (b.length - exportOverheadSize != alloc) {
Log.logSevere("RowSet", "exportOverheadSize wrong: b.length = " + b.length + ", size * rowdef.objectsize = " + size * rowdef.objectsize);
return new RowSet(rowdef);
}
System.arraycopy(b, exportOverheadSize, chunkcache, 0, chunkcache.length);
return new RowSet(rowdef, size, chunkcache, orderbound);
}
private RowSet(Row rowdef, byte[] chunkcache, int chunkcount, int sortBound, long lastTimeWrote) {
super(rowdef, chunkcache, chunkcount, sortBound, lastTimeWrote);
}
public RowSet clone() {
return new RowSet(super.rowdef, super.chunkcache, super.chunkcount, super.sortBound, super.lastTimeWrote);
}
public void reset() {
super.reset();
}
public final synchronized boolean has(final byte[] key) {
assert key.length == this.rowdef.primaryKeyLength;
final int index = find(key, 0);
return index >= 0;
}
public final synchronized Row.Entry get(final byte[] key) {
assert key.length == this.rowdef.primaryKeyLength;
final int index = find(key, 0);
if (index < 0) return null;
return get(index, true);
}
public final synchronized void put(final Row.Entry entry) throws RowSpaceExceededException {
assert (entry != null);
assert (entry.getPrimaryKeyBytes() != null);
// when reaching a specific amount of un-sorted entries, re-sort all
if ((this.chunkcount - this.sortBound) > collectionReSortLimit) {
sort();
}
assert entry.bytes().length >= this.rowdef.primaryKeyLength;
final int index = find(entry.bytes(), 0);
if (index < 0) {
super.addUnique(entry);
} else {
final int sb = this.sortBound; // save the sortBound, because it is not altered (we replace at the same place)
set(index, entry); // this may alter the sortBound, which we will revert in the next step
this.sortBound = sb; // revert a sortBound altering
}
}
public final synchronized Row.Entry replace(final Row.Entry entry) throws RowSpaceExceededException {
assert (entry != null);
assert (entry.getPrimaryKeyBytes() != null);
int index = -1;
Row.Entry oldentry = null;
// when reaching a specific amount of un-sorted entries, re-sort all
if ((this.chunkcount - this.sortBound) > collectionReSortLimit) {
sort();
}
assert entry.bytes().length >= this.rowdef.primaryKeyLength;
index = find(entry.bytes(), 0);
if (index < 0) {
super.addUnique(entry);
} else {
oldentry = get(index, true);
final int sb = this.sortBound; // save the sortBound, because it is not altered (we replace at the same place)
set(index, entry); // this may alter the sortBound, which we will revert in the next step
this.sortBound = sb; // revert a sortBound altering
}
return oldentry;
}
public final synchronized long inc(final byte[] key, final int col, final long add, final Row.Entry initrow) throws RowSpaceExceededException {
assert key.length == this.rowdef.primaryKeyLength;
final int index = find(key, 0);
if (index >= 0) {
// the entry existed before
final Row.Entry entry = get(index, false); // no clone necessary
final long l = entry.incCol(col, add);
set(index, entry);
return l;
} else if (initrow != null) {
// create new entry
super.addUnique(initrow);
return initrow.getColLong(col);
} else {
// if initrow == null just do nothing
// but return a Long.MIN_VALUE
return Long.MIN_VALUE;
}
}
/**
* remove a byte[] from the set.
* if the entry was found, return the entry, but delete the entry from the set
* if the entry was not found, return null.
*/
public final synchronized boolean delete(final byte[] a) {
boolean exists = false;
int index;
assert a.length == this.rowdef.primaryKeyLength;
while (true) {
index = find(a, 0);
if (index < 0) {
return exists;
} else {
exists = true;
super.removeRow(index, true); // keep order of collection!
}
}
}
public final synchronized Row.Entry remove(final byte[] a) {
Row.Entry entry = null;
int index;
assert a.length == this.rowdef.primaryKeyLength;
while (true) {
index = find(a, 0);
if (index < 0) {
return entry;
} else {
entry = super.get(index, true);
super.removeRow(index, true); // keep order of collection!
}
}
}
private final int find(final byte[] a, final int astart) {
// returns the chunknumber; -1 if not found
if (rowdef.objectOrder == null) return iterativeSearch(a, astart, 0, this.chunkcount);
if ((this.chunkcount - this.sortBound) > collectionReSortLimit) {
sort();
}
if (this.rowdef.objectOrder != null && this.rowdef.objectOrder instanceof Base64Order) {
// first try to find in sorted area
assert this.rowdef.objectOrder.wellformed(a, astart, this.rowdef.primaryKeyLength) : "not wellformed: " + new String(a, astart, this.rowdef.primaryKeyLength);
}
// first try to find in sorted area
final int p = binarySearch(a, astart);
if (p >= 0) return p;
// then find in unsorted area
return iterativeSearch(a, astart, this.sortBound, this.chunkcount);
}
private final int iterativeSearch(final byte[] key, final int astart, final int leftBorder, final int rightBound) {
// returns the chunknumber
for (int i = leftBorder; i < rightBound; i++) {
assert key.length - astart >= this.rowdef.primaryKeyLength;
if (match(key, astart, i)) return i;
}
return -1;
}
private final int binarySearch(final byte[] key, final int astart) {
// returns the exact position of the key if the key exists,
// or -1 if the key does not exist
assert (rowdef.objectOrder != null);
int l = 0;
int rbound = this.sortBound;
int p = 0;
int d;
while (l < rbound) {
p = (l + rbound) >> 1;
assert key.length - astart >= this.rowdef.primaryKeyLength;
d = compare(key, astart, p);
if (d == 0) return p;
if (d < 0) rbound = p; else l = p + 1;
}
return -1;
}
protected final int binaryPosition(final byte[] key, final int astart) {
// returns the exact position of the key if the key exists,
// or a position of an entry that is greater than the key if the
// key does not exist
assert (rowdef.objectOrder != null);
int l = 0;
int rbound = this.sortBound;
int p = 0;
int d;
while (l < rbound) {
p = (l + rbound) >> 1;
assert key.length - astart >= this.rowdef.primaryKeyLength;
d = compare(key, astart, p);
if (d == 0) return p;
if (d < 0) rbound = p; else l = p + 1;
}
return l;
}
public final synchronized Iterator<byte[]> keys() {
sort();
return super.keys(true);
}
public final synchronized CloneableIterator<byte[]> keys(final boolean up, final byte[] firstKey) {
return new keyIterator(up, firstKey);
}
public final class keyIterator implements CloneableIterator<byte[]> {
private final boolean up;
private final byte[] first;
private int p;
final int bound;
public keyIterator(final boolean up, byte[] firstKey) {
// see that all elements are sorted
sort();
this.up = up;
if (firstKey != null && firstKey.length == 0) firstKey = null;
this.first = firstKey;
this.bound = sortBound;
if (first == null) {
p = 0;
} else {
assert first.length == rowdef.primaryKeyLength : "first.length = " + first.length + ", rowdef.primaryKeyLength = " + rowdef.primaryKeyLength;
p = binaryPosition(first, 0); // check this to find bug in DHT selection enumeration
}
}
public final keyIterator clone(final Object second) {
return new keyIterator(up, (byte[]) second);
}
public final boolean hasNext() {
if (p < 0) return false;
if (p >= size()) return false;
if (up) {
return p < bound;
} else {
return p >= 0;
}
}
public final byte[] next() {
final byte[] key = getKey(p);
if (up) p++; else p--;
return key;
}
public final void remove() {
throw new UnsupportedOperationException();
}
}
public final synchronized Iterator<Row.Entry> iterator() {
// iterates kelondroRow.Entry - type entries
sort();
return super.iterator();
}
public final synchronized CloneableIterator<Row.Entry> rows(final boolean up, final byte[] firstKey) {
return new rowIterator(up, firstKey);
}
public final synchronized CloneableIterator<Row.Entry> rows() {
return new rowIterator(true, null);
}
public final class rowIterator implements CloneableIterator<Row.Entry> {
private final boolean up;
private final byte[] first;
private int p;
final int bound;
public rowIterator(final boolean up, final byte[] firstKey) {
// see that all elements are sorted
sort();
this.up = up;
this.first = firstKey;
this.bound = sortBound;
if (first == null) {
p = 0;
} else {
assert first.length == rowdef.primaryKeyLength;
p = binaryPosition(first, 0); // check this to find bug in DHT selection enumeration
}
}
public final rowIterator clone(final Object second) {
return new rowIterator(up, (byte[]) second);
}
public final boolean hasNext() {
if (p < 0) return false;
if (p >= size()) return false;
if (up) {
return p < bound;
} else {
return p >= 0;
}
}
public final Row.Entry next() {
final Row.Entry entry = get(p, true);
if (up) p++; else p--;
return entry;
}
public final void remove() {
throw new UnsupportedOperationException();
}
}
/**
* merge this row collection with another row collection.
* The resulting collection is sorted and does not contain any doubles, which are also removed during the merge.
* The new collection may be a copy of one of the old one, or can be an alteration of one of the input collections
* After this merge, none of the input collections should be used, because they can be altered
* @param c
* @return
* @throws RowSpaceExceededException
*/
public final RowSet merge(final RowSet c) throws RowSpaceExceededException {
assert c != null;
return mergeEnum(this, c);
}
/**
* merge this row collection with another row collection using an simultanous iteration of the input collections
* the current collection is not altered in any way, the returned collection is a new collection with copied content.
* @param c
* @return
* @throws RowSpaceExceededException
*/
protected final static RowSet mergeEnum(final RowCollection c0, final RowCollection c1) throws RowSpaceExceededException {
assert c0.rowdef == c1.rowdef : c0.rowdef.toString() + " != " + c1.rowdef.toString();
final RowSet r = new RowSet(c0.rowdef, c0.size() + c1.size());
try {
c0.sort();
} catch (Exception e) {
Log.logSevere("RowSet", "collection corrupted. cleaned. " + e.getMessage(), e);
c0.clear();
}
try {
c1.sort();
} catch (Exception e) {
Log.logSevere("RowSet", "collection corrupted. cleaned. " + e.getMessage(), e);
c1.clear();
}
int c0i = 0, c1i = 0;
int c0p, c1p;
int o;
final int objectsize = c0.rowdef.objectsize;
while (c0i < c0.size() && c1i < c1.size()) {
c0p = c0i * objectsize;
c1p = c1i * objectsize;
o = c0.rowdef.objectOrder.compare(
c0.chunkcache, c0p,
c1.chunkcache, c1p, c0.rowdef.primaryKeyLength);
if (o == 0) {
r.addSorted(c0.chunkcache, c0p, objectsize);
c0i++;
c1i++;
continue;
}
if (o < 0) {
r.addSorted(c0.chunkcache, c0p, objectsize);
c0i++;
continue;
}
if (o > 0) {
r.addSorted(c1.chunkcache, c1p, objectsize);
c1i++;
continue;
}
}
while (c0i < c0.size()) {
r.addSorted(c0.chunkcache, c0i * objectsize, objectsize);
c0i++;
}
while (c1i < c1.size()) {
r.addSorted(c1.chunkcache, c1i * objectsize, objectsize);
c1i++;
}
return r;
}
public static void main(final String[] args) {
// sort/uniq-test
/*
kelondroRow rowdef = new kelondroRow("Cardinal key-4 {b256}, byte[] payload-1", kelondroNaturalOrder.naturalOrder, 0);
kelondroRowSet rs = new kelondroRowSet(rowdef, 0);
Random random = new Random(0);
kelondroRow.Entry entry;
for (int i = 0; i < 10000000; i++) {
entry = rowdef.newEntry();
entry.setCol(0, Math.abs(random.nextLong() % 1000000));
entry.setCol(1, "a".getBytes());
rs.addUnique(entry);
}
System.out.println("before sort, size = " + rs.size());
rs.sort();
System.out.println("after sort, before uniq, size = " + rs.size());
rs.uniq(10000);
System.out.println("after uniq, size = " + rs.size());
*/
final String[] test = {
"eins......xxxx",
"zwei......xxxx",
"drei......xxxx",
"vier......xxxx",
"fuenf.....xxxx",
"sechs.....xxxx",
"sieben....xxxx",
"acht......xxxx",
"neun......xxxx",
"zehn......xxxx" };
final RowSet d = new RowSet(new Row("byte[] key-10, Cardinal x-4 {b256}", NaturalOrder.naturalOrder));
for (int ii = 0; ii < test.length; ii++)
try {
d.add(test[ii].getBytes());
} catch (RowSpaceExceededException e) {
e.printStackTrace();
}
for (int ii = 0; ii < test.length; ii++)
try {
d.add(test[ii].getBytes());
} catch (RowSpaceExceededException e) {
e.printStackTrace();
}
d.sort();
d.delete("fuenf".getBytes());
final Iterator<Row.Entry> ii = d.iterator();
String s;
System.out.print("INPUT-ITERATOR: ");
Row.Entry entry;
while (ii.hasNext()) {
entry = ii.next();
s = new String(entry.getColBytes(0, true)).trim();
System.out.print(s + ", ");
if (s.equals("drei")) ii.remove();
}
System.out.println("");
System.out.println("INPUT-TOSTRING: " + d.toString());
d.sort();
System.out.println("SORTED : " + d.toString());
d.uniq();
System.out.println("UNIQ : " + d.toString());
d.trim();
System.out.println("TRIM : " + d.toString());
/*
// second test
c = new kelondroRowSet(new kelondroRow(new int[]{10, 3}));
c.setOrdering(kelondroNaturalOrder.naturalOrder, 0);
Random rand = new Random(0);
long start = System.currentTimeMillis();
long t, d = 0;
String w;
for (long k = 0; k < 60000; k++) {
t = System.currentTimeMillis();
w = "a" + Long.toString(rand.nextLong());
c.add(w.getBytes());
if (k % 10000 == 0)
System.out.println("added " + k + " entries in " +
((t - start) / 1000) + " seconds, " +
(((t - start) > 1000) ? (k / ((t - start) / 1000)) : k) +
" entries/second, size = " + c.size());
}
System.out.println("bevore sort: " + ((System.currentTimeMillis() - start) / 1000) + " seconds");
c.shape();
System.out.println("after sort: " + ((System.currentTimeMillis() - start) / 1000) + " seconds");
c.uniq();
System.out.println("after uniq: " + ((System.currentTimeMillis() - start) / 1000) + " seconds");
System.out.println("RESULT SIZE: " + c.size());
System.out.println();
// third test
c = new kelondroRowSet(new kelondroRow(new int[]{10, 3}), 60000);
c.setOrdering(kelondroNaturalOrder.naturalOrder, 0);
rand = new Random(0);
start = System.currentTimeMillis();
d = 0;
for (long k = 0; k < 60000; k++) {
t = System.currentTimeMillis();
w = "a" + Long.toString(rand.nextLong());
if (c.get(w.getBytes(), 0, 10) == null) c.add(w.getBytes()); else d++;
if (k % 10000 == 0)
System.out.println("added " + k + " entries in " +
((t - start) / 1000) + " seconds, " +
(((t - start) > 1000) ? (k / ((t - start) / 1000)) : k) +
" entries/second, " + d + " double, size = " + c.size() +
", sum = " + (c.size() + d));
}
System.out.println("RESULT SIZE: " + c.size());
*/
/*
// performance test for put
long start = System.currentTimeMillis();
kelondroRowSet c = new kelondroRowSet(new kelondroRow("byte[] a-12, byte[] b-12"), 0);
Random random = new Random(0);
byte[] key;
for (int i = 0; i < 100000; i++) {
key = randomHash(random);
c.put(c.rowdef.newEntry(new byte[][]{key, key}));
if (i % 1000 == 0) System.out.println(i + " entries. ");
}
System.out.println("RESULT SIZE: " + c.size());
System.out.println("Time: " + ((System.currentTimeMillis() - start) / 1000) + " seconds");
*/
// remove test
final long start = System.currentTimeMillis();
final RowSet c = new RowSet(new Row("byte[] a-12, byte[] b-12", Base64Order.enhancedCoder));
byte[] key;
final int testsize = 5000;
final byte[][] delkeys = new byte[testsize / 5][];
Random random = new Random(0);
for (int i = 0; i < testsize; i++) {
key = randomHash(random);
if (i % 5 != 0) continue;
delkeys[i / 5] = key;
}
random = new Random(0);
for (int i = 0; i < testsize; i++) {
key = randomHash(random);
try {
c.put(c.rowdef.newEntry(new byte[][]{key, key}));
} catch (RowSpaceExceededException e) {
e.printStackTrace();
}
if (i % 1000 == 0) {
for (int j = 0; j < delkeys.length; j++) c.delete(delkeys[j]);
c.sort();
}
}
for (int j = 0; j < delkeys.length; j++) c.delete(delkeys[j]);
c.sort();
random = new Random(0);
for (int i = 0; i < testsize; i++) {
key = randomHash(random);
if (i % 5 == 0) continue;
if (c.get(key) == null) System.out.println("missing entry " + new String(key));
}
c.sort();
System.out.println("RESULT SIZE: " + c.size());
System.out.println("Time: " + ((System.currentTimeMillis() - start) / 1000) + " seconds");
}
public static byte[] randomHash(final long r0, final long r1) {
// a long can have 64 bit, but a 12-byte hash can have 6 * 12 = 72 bits
// so we construct a generic Hash using two long values
return (Base64Order.enhancedCoder.encodeLong(Math.abs(r0), 11).substring(5) +
Base64Order.enhancedCoder.encodeLong(Math.abs(r1), 11).substring(5)).getBytes();
}
public static byte[] randomHash(final Random r) {
return randomHash(r.nextLong(), r.nextLong());
}
public String filename() {
return null;
}
public void deleteOnExit() {
// do nothing, there is no file
}
}