yacy_search_server/source/de/anomic/kelondro/text/ReferenceContainerCache.java

470 lines
18 KiB
Java
Raw Normal View History

// indexContainerCache.java
// (C) 2008 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
// first published 30.03.2008 on http://yacy.net
//
// This is a part of YaCy, a peer-to-peer based web search engine
//
// $LastChangedDate$
// $LastChangedRevision$
// $LastChangedBy$
//
// LICENSE
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
package de.anomic.kelondro.text;
import java.io.File;
import java.io.IOException;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import java.util.TreeMap;
import java.util.concurrent.ConcurrentHashMap;
import de.anomic.kelondro.blob.HeapReader;
import de.anomic.kelondro.blob.HeapWriter;
import de.anomic.kelondro.order.CloneableIterator;
import de.anomic.kelondro.order.Base64Order;
import de.anomic.kelondro.order.ByteOrder;
import de.anomic.kelondro.util.ByteArray;
import de.anomic.kelondro.util.FileUtils;
import de.anomic.kelondro.util.Log;
import de.anomic.kelondro.index.Row;
import de.anomic.kelondro.index.RowSet;
public final class ReferenceContainerCache<ReferenceType extends Reference> extends AbstractIndex<ReferenceType> implements Index<ReferenceType>, IndexReader<ReferenceType>, Iterable<ReferenceContainer<ReferenceType>> {
private final Row payloadrow;
private final ByteOrder termOrder;
private Map<ByteArray, ReferenceContainer<ReferenceType>> cache;
/**
* opens an existing heap file in undefined mode
* after this a initialization should be made to use the heap:
* either a read-only or read/write mode initialization
* @param payloadrow
* @param log
*/
public ReferenceContainerCache(final ReferenceFactory<ReferenceType> factory, final Row payloadrow, ByteOrder termOrder) {
super(factory);
this.payloadrow = payloadrow;
this.termOrder = termOrder;
this.cache = null;
}
public Row rowdef() {
return this.payloadrow;
}
public void clear() {
if (cache != null) cache.clear();
initWriteMode();
}
public void close() {
this.cache = null;
}
/**
* initializes the heap in read/write mode without reading of a dump first
* another dump reading afterwards is not possible
*/
public void initWriteMode() {
this.cache = new ConcurrentHashMap<ByteArray, ReferenceContainer<ReferenceType>>();
}
public void dump(final File heapFile, int writeBuffer) {
assert this.cache != null;
Log.logInfo("indexContainerRAMHeap", "creating rwi heap dump '" + heapFile.getName() + "', " + cache.size() + " rwi's");
if (heapFile.exists()) FileUtils.deletedelete(heapFile);
File tmpFile = new File(heapFile.getParentFile(), heapFile.getName() + ".prt");
HeapWriter dump;
try {
dump = new HeapWriter(tmpFile, heapFile, payloadrow.primaryKeyLength, Base64Order.enhancedCoder, writeBuffer);
} catch (IOException e1) {
e1.printStackTrace();
return;
}
final long startTime = System.currentTimeMillis();
// sort the map
SortedMap<byte[], ReferenceContainer<ReferenceType>> cachecopy = sortedClone();
// write wCache
long wordcount = 0, urlcount = 0;
byte[] wordHash = null, lwh;
ReferenceContainer<ReferenceType> container;
for (final Map.Entry<byte[], ReferenceContainer<ReferenceType>> entry: cachecopy.entrySet()) {
// get entries
lwh = wordHash;
wordHash = entry.getKey();
container = entry.getValue();
// check consistency: entries must be ordered
assert (lwh == null || this.ordering().compare(wordHash, lwh) > 0);
// put entries on heap
if (container != null && wordHash.length == payloadrow.primaryKeyLength) {
//System.out.println("Dump: " + wordHash);
try {
dump.add(wordHash, container.exportCollection());
} catch (IOException e) {
e.printStackTrace();
}
urlcount += container.size();
}
wordcount++;
}
try {
dump.close(true);
Log.logInfo("indexContainerRAMHeap", "finished rwi heap dump: " + wordcount + " words, " + urlcount + " word/URL relations in " + (System.currentTimeMillis() - startTime) + " milliseconds");
} catch (IOException e) {
e.printStackTrace();
Log.logInfo("indexContainerRAMHeap", "failed rwi heap dump: " + e.getMessage());
} finally {
dump = null;
}
}
public SortedMap<byte[], ReferenceContainer<ReferenceType>> sortedClone() {
SortedMap<byte[], ReferenceContainer<ReferenceType>> cachecopy;
synchronized (cache) {
cachecopy = new TreeMap<byte[], ReferenceContainer<ReferenceType>>(this.termOrder);
for (final Map.Entry<ByteArray, ReferenceContainer<ReferenceType>> entry: cache.entrySet()) {
cachecopy.put(entry.getKey().asBytes(), entry.getValue());
}
}
return cachecopy;
}
public int size() {
return (this.cache == null) ? 0 : this.cache.size();
}
/**
* static iterator of BLOBHeap files: is used to import heap dumps into a write-enabled index heap
*/
public static class blobFileEntries <ReferenceType extends Reference> implements CloneableIterator<ReferenceContainer<ReferenceType>>, Iterable<ReferenceContainer<ReferenceType>> {
HeapReader.entries blobs;
Row payloadrow;
File blobFile;
ReferenceFactory<ReferenceType> factory;
public blobFileEntries(final File blobFile, ReferenceFactory<ReferenceType> factory, final Row payloadrow) throws IOException {
this.blobs = new HeapReader.entries(blobFile, payloadrow.primaryKeyLength);
this.payloadrow = payloadrow;
this.blobFile = blobFile;
this.factory = factory;
}
public boolean hasNext() {
if (blobs == null) return false;
if (blobs.hasNext()) return true;
close();
return false;
}
/**
* return an index container
* because they may get very large, it is wise to deallocate some memory before calling next()
*/
public ReferenceContainer<ReferenceType> next() {
Map.Entry<String, byte[]> entry = blobs.next();
byte[] payload = entry.getValue();
return new ReferenceContainer<ReferenceType>(factory, entry.getKey().getBytes(), RowSet.importRowSet(payload, payloadrow));
}
public void remove() {
throw new UnsupportedOperationException("heap dumps are read-only");
}
public Iterator<ReferenceContainer<ReferenceType>> iterator() {
return this;
}
public void close() {
if (blobs != null) this.blobs.close();
blobs = null;
}
protected void finalize() {
this.close();
}
public CloneableIterator<ReferenceContainer<ReferenceType>> clone(Object modifier) {
if (blobs != null) this.blobs.close();
blobs = null;
try {
return new blobFileEntries<ReferenceType>(this.blobFile, factory, this.payloadrow);
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
}
public int maxReferences() {
// iterate to find the max score
int max = 0;
for (ReferenceContainer<ReferenceType> container : cache.values()) {
if (container.size() > max) max = container.size();
}
return max;
}
/**
* return an iterator object that creates top-level-clones of the indexContainers
* in the cache, so that manipulations of the iterated objects do not change
* objects in the cache.
*/
public synchronized CloneableIterator<ReferenceContainer<ReferenceType>> references(final byte[] startWordHash, final boolean rot) {
return new heapCacheIterator(startWordHash, rot);
}
public Iterator<ReferenceContainer<ReferenceType>> iterator() {
return references(null, false);
}
/**
* cache iterator: iterates objects within the heap cache. This can only be used
* for write-enabled heaps, read-only heaps do not have a heap cache
*/
public class heapCacheIterator implements CloneableIterator<ReferenceContainer<ReferenceType>>, Iterable<ReferenceContainer<ReferenceType>> {
// this class exists, because the wCache cannot be iterated with rotation
// and because every indexContainer Object that is iterated must be returned as top-level-clone
// so this class simulates wCache.tailMap(startWordHash).values().iterator()
// plus the mentioned features
private final boolean rot;
private Iterator<ReferenceContainer<ReferenceType>> iterator;
private byte[] latestTermHash;
public heapCacheIterator(byte[] startWordHash, final boolean rot) {
this.rot = rot;
if (startWordHash != null && startWordHash.length == 0) startWordHash = null;
SortedMap<byte[], ReferenceContainer<ReferenceType>> cachecopy = sortedClone();
this.iterator = (startWordHash == null) ? cachecopy.values().iterator() : cachecopy.tailMap(startWordHash).values().iterator();
this.latestTermHash = null;
// The collection's iterator will return the values in the order that their corresponding keys appear in the tree.
}
public heapCacheIterator clone(final Object secondWordHash) {
return new heapCacheIterator((byte[]) secondWordHash, rot);
}
public boolean hasNext() {
if (rot) return true;
return iterator.hasNext();
}
public ReferenceContainer<ReferenceType> next() {
if (iterator.hasNext()) {
ReferenceContainer<ReferenceType> c = iterator.next();
this.latestTermHash = c.getTermHash();
return c.topLevelClone();
}
// rotation iteration
if (!rot) {
return null;
}
iterator = cache.values().iterator();
ReferenceContainer<ReferenceType> c = iterator.next();
this.latestTermHash = c.getTermHash();
return c.topLevelClone();
}
public void remove() {
iterator.remove();
cache.remove(new ByteArray(this.latestTermHash));
}
public Iterator<ReferenceContainer<ReferenceType>> iterator() {
return this;
}
}
/**
* test if a given key is in the heap
* this works with heaps in write- and read-mode
* @param key
* @return true, if the key is used in the heap; false othervise
*/
public boolean has(final byte[] key) {
return this.cache.containsKey(new ByteArray(key));
}
/**
* get a indexContainer from a heap
* @param key
* @return the indexContainer if one exist, null otherwise
*/
public ReferenceContainer<ReferenceType> get(final byte[] key, Set<String> urlselection) {
if (urlselection == null) return this.cache.get(new ByteArray(key));
ReferenceContainer<ReferenceType> c = this.cache.get(new ByteArray(key));
if (c == null) return null;
// because this is all in RAM, we must clone the entries (flat)
ReferenceContainer<ReferenceType> c1 = new ReferenceContainer<ReferenceType>(factory, c.getTermHash(), c.row(), c.size());
Iterator<ReferenceType> e = c.entries();
ReferenceType ee;
while (e.hasNext()) {
ee = e.next();
if (urlselection.contains(ee.metadataHash())) c1.add(ee);
}
return c1;
}
/**
* return the size of the container with corresponding key
* @param key
* @return
*/
public int count(final byte[] key) {
ReferenceContainer<ReferenceType> c = this.cache.get(new ByteArray(key));
if (c == null) return 0;
return c.size();
}
/**
* delete a indexContainer from the heap cache. This can only be used for write-enabled heaps
* @param wordHash
* @return the indexContainer if the cache contained the container, null othervise
*/
public ReferenceContainer<ReferenceType> delete(final byte[] termHash) {
// returns the index that had been deleted
assert this.cache != null;
return cache.remove(new ByteArray(termHash));
}
public boolean remove(final byte[] termHash, final String urlHash) {
assert this.cache != null;
ByteArray tha = new ByteArray(termHash);
synchronized (cache) {
final ReferenceContainer<ReferenceType> c = cache.get(tha);
if ((c != null) && (c.remove(urlHash) != null)) {
// removal successful
if (c.size() == 0) {
delete(termHash);
} else {
cache.put(tha, c);
}
return true;
}
}
return false;
}
public int remove(final byte[] termHash, final Set<String> urlHashes) {
assert this.cache != null;
if (urlHashes.size() == 0) return 0;
ByteArray tha = new ByteArray(termHash);
int count;
synchronized (cache) {
final ReferenceContainer<ReferenceType> c = cache.get(tha);
if ((c != null) && ((count = c.removeEntries(urlHashes)) > 0)) {
// removal successful
if (c.size() == 0) {
delete(termHash);
} else {
cache.put(tha, c);
}
return count;
}
}
return 0;
}
public void add(final ReferenceContainer<ReferenceType> container) {
// this puts the entries into the cache
assert this.cache != null;
if (this.cache == null || container == null || container.size() == 0) return;
// put new words into cache
ByteArray tha = new ByteArray(container.getTermHash());
int added = 0;
synchronized (cache) {
ReferenceContainer<ReferenceType> entries = cache.get(tha); // null pointer exception? wordhash != null! must be cache==null
if (entries == null) {
entries = container.topLevelClone();
added = entries.size();
} else {
added = entries.putAllRecent(container);
}
if (added > 0) {
cache.put(tha, entries);
}
entries = null;
return;
}
}
public void add(final byte[] termHash, final ReferenceType newEntry) {
assert this.cache != null;
ByteArray tha = new ByteArray(termHash);
// first access the cache without synchronization
ReferenceContainer<ReferenceType> container = cache.remove(tha);
if (container == null) container = new ReferenceContainer<ReferenceType>(factory, termHash, this.payloadrow, 1);
container.put(newEntry);
// synchronization: check if the entry is still empty and set new value
synchronized (cache) {
ReferenceContainer<ReferenceType> containerNew = cache.put(tha, container);
if (containerNew == null) return;
container.putAllRecent(containerNew);
cache.put(tha, container);
}
}
/*
public void add(final byte[] termHash, final ReferenceType newEntry) {
assert this.cache != null;
ByteArray tha = new ByteArray(termHash);
// first access the cache without synchronization
ReferenceContainer<ReferenceType> container = cache.remove(tha);
if (container == null) container = new ReferenceContainer<ReferenceType>(factory, termHash, this.payloadrow, 1);
container.put(newEntry);
// then try to replace the entry that should be empty,
// but it can be possible that another thread has written something in between
ReferenceContainer<ReferenceType> containerNew = cache.put(tha, container);
if (containerNew == null) return;
container = containerNew;
// finally use synchronization: ensure that the entry is written exclusively
synchronized (cache) {
containerNew = cache.get(tha);
if (containerNew != null) container.putAllRecent(containerNew);
cache.put(tha, container);
}
}
*/
public int minMem() {
return 0;
}
public ByteOrder ordering() {
return this.termOrder;
}
}