yacy_search_server/source/de/anomic/kelondro/kelondroBLOBBuffer.java

401 lines
14 KiB
Java
Raw Normal View History

// kelondroBLOBBuffer.java
// (C) 2008 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
// first published 17.10.2008 on http://yacy.net
//
// This is a part of YaCy, a peer-to-peer based web search engine
//
// $LastChangedDate: 2006-04-02 22:40:07 +0200 (So, 02 Apr 2006) $
// $LastChangedRevision: 1986 $
// $LastChangedBy: orbiter $
//
// LICENSE
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
package de.anomic.kelondro;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Iterator;
import java.util.Map;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.Semaphore;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;
public class kelondroBLOBBuffer extends Thread implements kelondroBLOB {
static byte[] gzipMagic = {(byte) 'z', (byte) '|'}; // magic for gzip-encoded content
static byte[] plainMagic = {(byte) 'p', (byte) '|'}; // magic for plain content (no encoding)
private kelondroBLOB backend;
private boolean executing, shallRun;
private Semaphore shutdownControl; // steering of close method
private boolean compress; // if true then files should be written compressed
private LinkedBlockingQueue<Map.Entry<byte[], byte[]>> rawQueue; // entries which are not compressed, format is RAW (without magic)
private LinkedBlockingQueue<Map.Entry<byte[], byte[]>> compressedQueue; // entries which are compressed, format is with leading magic
private long queueLength;
private long maxCacheSize;
private class Entry implements Map.Entry<byte[], byte[]> {
byte[] key, value;
public Entry(byte[] key, byte[] value) {
this.key = key;
this.value = value;
}
public byte[] getKey() {
return this.key;
}
public byte[] getValue() {
return this.value;
}
public byte[] setValue(byte[] value) {
byte[] b = this.value;
this.value = value;
return b;
}
}
public kelondroBLOBBuffer(kelondroBLOB backend, long cachesize, boolean compress) {
this.backend = backend;
this.maxCacheSize = cachesize;
this.compress = compress;
this.executing = false;
this.shallRun = false;
this.shutdownControl = null;
assert !this.executing || this.compress;
initQueues();
}
public synchronized void clear() throws IOException {
shutdown();
initQueues();
this.backend.clear();
if (this.executing) this.start();
}
private void initQueues() {
/*
* executing = false, compress = false: Queue = used, CompressedQueue = null
* files are written in the uncompressed-queue and are written from there into the database
*
* executing = false, compress = true : Queue = null, CompressedQueue = used
* files are compressed when they arrive and written to the compressed queue
*
* executing = true, compress = false: status is not allowed, this does not make sense because the additional thread is only for compression of files
*
* executing = true, compress = true : Queue = used, CompressedQueue = used
* files are written uncompressed to the uncompressed-queue and compressed with the concurrent thread
*/
this.rawQueue = new LinkedBlockingQueue<Map.Entry<byte[], byte[]>>();
this.compressedQueue = (compress) ? new LinkedBlockingQueue<Map.Entry<byte[], byte[]>>() : null;
this.queueLength = 0;
}
public synchronized void close() {
shutdown();
// no more thread is running, flush all queues
try {
flushAll();
} catch (IOException e) {
e.printStackTrace();
}
this.backend.close();
}
private void shutdown() {
this.shallRun = false;
if (this.executing && this.shutdownControl != null) {
// wait for semaphore
try {this.shutdownControl.acquire();} catch (InterruptedException e) {}
}
}
private byte[] compress(byte[] b) {
// compressed a byte array and adds a leading magic for the compression
try {
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
baos.write(gzipMagic);
final OutputStream os = new GZIPOutputStream(baos, 128);
os.write(b);
os.close();
baos.close();
return baos.toByteArray();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
private byte[] markWithPlainMagic(byte[] b) {
byte[] r = new byte[b.length + 2];
r[0] = plainMagic[0];
r[1] = plainMagic[1];
System.arraycopy(b, 0, r, 2, b.length);
return r;
}
private byte[] decompress(byte[] b) {
// use a magic in the head of the bytes to identify compression type
if (kelondroByteArray.equals(b, gzipMagic)) {
ByteArrayInputStream bais = new ByteArrayInputStream(b);
// eat up the magic
bais.read();
bais.read();
// decompress what is remaining
InputStream gis;
try {
gis = new GZIPInputStream(bais);
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
final byte[] buf = new byte[1024];
int n;
while ((n = gis.read(buf)) > 0) baos.write(buf, 0, n);
gis.close();
bais.close();
baos.close();
return baos.toByteArray();
} catch (IOException e) {
e.printStackTrace();
return null;
}
} else if (kelondroByteArray.equals(b, plainMagic)) {
byte[] r = new byte[b.length - 2];
System.arraycopy(b, 2, r, 0, b.length - 2);
return r;
} else {
// we consider that the entry is also plain, but without leading magic
return b;
}
}
private byte[] getFromQueue(byte[] key, LinkedBlockingQueue<Map.Entry<byte[], byte[]>> queue) {
Iterator<Map.Entry<byte[], byte[]>> i = queue.iterator();
Map.Entry<byte[], byte[]> e;
while (i.hasNext()) {
e = i.next();
if (kelondroByteArray.equals(key, e.getKey())) return e.getValue();
}
return null;
}
private byte[] getFromQueues(byte[] key) throws IOException {
byte[] b = (rawQueue == null) ? null : getFromQueue(key, rawQueue);
if (b != null) return b;
b = (compressedQueue == null) ? null : getFromQueue(key, compressedQueue);
if (b != null) return decompress(b);
return null;
}
public synchronized byte[] get(byte[] key) throws IOException {
byte[] b = getFromQueues(key);
if (b != null) return b;
b = this.backend.get(key);
if (b == null) return null;
return decompress(b);
}
private boolean hasInQueue(byte[] key, LinkedBlockingQueue<Map.Entry<byte[], byte[]>> queue) {
Iterator<Map.Entry<byte[], byte[]>> i = queue.iterator();
Map.Entry<byte[], byte[]> e;
while (i.hasNext()) {
e = i.next();
if (kelondroByteArray.equals(key, e.getKey())) return true;
}
return false;
}
public synchronized boolean has(byte[] key) throws IOException {
return
(rawQueue != null && hasInQueue(key, rawQueue)) ||
(compressedQueue != null && hasInQueue(key, compressedQueue)) ||
this.backend.has(key);
}
public int keylength() {
return this.backend.keylength();
}
public synchronized long length() {
try {
return this.backend.length() + this.queueLength;
} catch (IOException e) {
e.printStackTrace();
return 0;
}
}
public synchronized long length(byte[] key) throws IOException {
byte[] b = (rawQueue == null) ? null : getFromQueue(key, rawQueue);
if (b != null) return b.length;
b = (compressedQueue == null) ? null : getFromQueue(key, compressedQueue);
if (b != null) return decompress(b).length;
return this.backend.length(key);
}
private byte[] removeFromQueue(byte[] key, LinkedBlockingQueue<Map.Entry<byte[], byte[]>> queue) {
Iterator<Map.Entry<byte[], byte[]>> i = queue.iterator();
Map.Entry<byte[], byte[]> e;
while (i.hasNext()) {
e = i.next();
if (kelondroByteArray.equals(key, e.getKey())) {
i.remove();
return e.getValue();
}
}
return null;
}
private boolean removeFromQueues(byte[] key) throws IOException {
byte[] b = (rawQueue == null) ? null : removeFromQueue(key, rawQueue);
if (b != null) return true;
b = (compressedQueue == null) ? null : removeFromQueue(key, compressedQueue);
if (b != null) return true;
return false;
}
public synchronized void put(byte[] key, byte[] b) throws IOException {
assert !this.executing || this.compress;
// first ensure that the files do not exist anywhere
this.backend.remove(key);
boolean existedInQueue = removeFromQueues(key);
if (existedInQueue) this.queueLength -= b.length; // this is only an approximation
// check if the buffer is full or could be full after this write
if (this.queueLength + b.length * 2 > this.maxCacheSize) flushAll();
// depending on execution cases, write into different queues
if (!this.executing && this.compress) {
// files are compressed when they arrive and written to the compressed queue
byte[] bb = compress(b);
this.compressedQueue.add(new Entry(key, bb));
this.queueLength += bb.length;
} else {
// files are written uncompressed to the uncompressed-queue
// they are either written uncompressed to the database
// or compressed with the concurrent thread and written later
this.rawQueue.add(new Entry(key, b));
this.queueLength += b.length;
}
}
public synchronized void remove(byte[] key) throws IOException {
this.backend.remove(key);
removeFromQueues(key);
}
public int size() {
return this.backend.size();
}
public synchronized kelondroCloneableIterator<byte[]> keys(boolean up, boolean rotating) throws IOException {
flushAll();
return this.backend.keys(up, rotating);
}
public synchronized kelondroCloneableIterator<byte[]> keys(boolean up, byte[] firstKey) throws IOException {
flushAll();
return this.backend.keys(up, firstKey);
}
private boolean flushOne(boolean block) throws IOException {
if (!this.executing && this.compress) {
// files are compressed when they arrive and written to the compressed queue
return flushOneCompressed(block);
} else {
// files are written uncompressed to the uncompressed-queue
// they are either written uncompressed to the database
// or compressed with the concurrent thread and written later
if (flushOneRaw(block)) return true;
else return flushOneCompressed(block);
}
}
private boolean flushOneRaw(boolean block) throws IOException {
if (this.rawQueue != null && (block || this.rawQueue.size() > 0)) {
// depening on process case, write it to the file or compress it to the other queue
try {
Map.Entry<byte[], byte[]> entry = this.rawQueue.take();
this.queueLength -= entry.getValue().length;
if (this.compress) {
entry.setValue(compress(entry.getValue()));
this.queueLength += entry.getValue().length;
this.compressedQueue.add(entry);
} else {
this.backend.put(entry.getKey(), markWithPlainMagic(entry.getValue()));
}
return true;
} catch (InterruptedException e) {
return false;
}
}
return false;
}
private boolean flushOneCompressed(boolean block) throws IOException {
if (this.compressedQueue != null && (block || this.compressedQueue.size() > 0)) {
// write compressed entry to the file
try {
Map.Entry<byte[], byte[]> entry = this.compressedQueue.take();
this.queueLength -= entry.getValue().length;
this.backend.put(entry.getKey(), entry.getValue());
return true;
} catch (InterruptedException e) {
return false;
}
}
return false;
}
private void flushAll() throws IOException {
while ((this.rawQueue != null && this.rawQueue.size() > 0) ||
(this.compressedQueue != null && this.compressedQueue.size() > 0)) {
if (!flushOne(false)) break;
}
this.queueLength = 0;
}
public void run() {
this.executing = true;
this.shallRun = true;
this.shutdownControl = new Semaphore(1);
assert !this.executing || this.compress;
boolean doneOne;
while (shallRun) {
try {
doneOne = flushOneRaw(true);
assert doneOne;
} catch (IOException e) {
e.printStackTrace();
break;
}
}
this.executing = false;
this.shutdownControl.release();
}
}