yacy_search_server/source/de/anomic/kelondro/index/IntegerHandleIndex.java

339 lines
12 KiB
Java
Raw Normal View History

// kelondroBytesIntMap.java
// (C) 2006 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
// first published 18.06.2006 on http://www.anomic.de
//
// $LastChangedDate: 2006-04-02 22:40:07 +0200 (So, 02 Apr 2006) $
// $LastChangedRevision: 1986 $
// $LastChangedBy: orbiter $
//
// LICENSE
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
package de.anomic.kelondro.index;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import de.anomic.kelondro.order.Base64Order;
import de.anomic.kelondro.order.ByteOrder;
import de.anomic.kelondro.order.CloneableIterator;
import de.anomic.yacy.dht.FlatWordPartitionScheme;
public class IntegerHandleIndex {
private final Row rowdef;
private ObjectIndexCache index;
public IntegerHandleIndex(final int keylength, final ByteOrder objectOrder, final int space) {
this.rowdef = new Row(new Column[]{new Column("key", Column.celltype_binary, Column.encoder_bytes, keylength, "key"), new Column("int c-4 {b256}")}, objectOrder, 0);
this.index = new ObjectIndexCache(rowdef, space);
}
/**
* initialize a BytesLongMap with the content of a dumped index
* @param keylength
* @param objectOrder
* @param file
* @throws IOException
*/
public IntegerHandleIndex(final int keylength, final ByteOrder objectOrder, final File file) throws IOException {
this(keylength, objectOrder, (int) (file.length() / (keylength + 8)));
// read the index dump and fill the index
InputStream is = new BufferedInputStream(new FileInputStream(file), 1024 * 1024);
byte[] a = new byte[keylength + 4];
int c;
while (true) {
c = is.read(a);
if (c <= 0) break;
this.index.addUnique(this.rowdef.newEntry(a));
}
is.close();
assert this.index.size() == file.length() / (keylength + 4);
}
/**
* write a dump of the index to a file. All entries are written in order
* which makes it possible to read them again in a fast way
* @param file
* @return the number of written entries
* @throws IOException
*/
public int dump(File file) throws IOException {
// we must use an iterator from the combined index, because we need the entries sorted
// otherwise we could just write the byte[] from the in kelondroRowSet which would make
// everything much faster, but this is not an option here.
Iterator<Row.Entry> i = this.index.rows(true, null);
OutputStream os = new BufferedOutputStream(new FileOutputStream(file), 1024 * 1024);
int c = 0;
while (i.hasNext()) {
os.write(i.next().bytes());
c++;
}
os.flush();
os.close();
return c;
}
public Row row() {
return index.row();
}
public void clear() throws IOException {
this.index.clear();
}
public synchronized boolean has(final byte[] key) {
assert (key != null);
return index.has(key);
}
public synchronized int get(final byte[] key) throws IOException {
assert (key != null);
final Row.Entry indexentry = index.get(key);
if (indexentry == null) return -1;
return (int) indexentry.getColLong(1);
}
public synchronized int put(final byte[] key, final int i) throws IOException {
assert i >= 0 : "i = " + i;
assert (key != null);
final Row.Entry newentry = index.row().newEntry();
newentry.setCol(0, key);
newentry.setCol(1, i);
final Row.Entry oldentry = index.put(newentry);
if (oldentry == null) return -1;
return (int) oldentry.getColLong(1);
}
public synchronized int inc(final byte[] key, int a) throws IOException {
assert key != null;
assert a > 0; // it does not make sense to add 0. If this occurres, it is a performance issue
final Row.Entry newentry = this.rowdef.newEntry();
newentry.setCol(0, key);
newentry.setCol(1, a);
long l = index.inc(key, 1, a, newentry);
return (int) l;
}
/*
public synchronized int inc(final byte[] key, int a) throws IOException {
assert key != null;
assert a > 0; // it does not make sense to add 0. If this occurres, it is a performance issue
final Row.Entry indexentry = index.get(key);
if (indexentry == null) {
final Row.Entry newentry = this.rowdef.newEntry();
newentry.setCol(0, key);
newentry.setCol(1, a);
index.addUnique(newentry);
return 1;
} else {
long l = indexentry.incCol(1, a);
index.put(indexentry);
return (int) l;
}
}
*/
public synchronized void putUnique(final byte[] key, final int i) throws IOException {
assert i >= 0 : "i = " + i;
assert (key != null);
final Row.Entry newentry = this.rowdef.newEntry();
newentry.setCol(0, key);
newentry.setCol(1, i);
index.addUnique(newentry);
}
public synchronized ArrayList<Integer[]> removeDoubles() throws IOException {
final ArrayList<Integer[]> report = new ArrayList<Integer[]>();
Integer[] is;
int c, i;
final int initialSize = this.size();
for (final RowCollection delset: index.removeDoubles()) {
is = new Integer[delset.size()];
c = 0;
for (Row.Entry e : delset) {
i = (int) e.getColLong(1);
assert i < initialSize : "i = " + i + ", initialSize = " + initialSize;
is[c++] = Integer.valueOf(i);
}
report.add(is);
}
return report;
}
public synchronized int remove(final byte[] key) throws IOException {
assert (key != null);
final Row.Entry indexentry = index.remove(key);
if (indexentry == null) return -1;
return (int) indexentry.getColLong(1);
}
public synchronized int removeone() throws IOException {
final Row.Entry indexentry = index.removeOne();
if (indexentry == null) return -1;
return (int) indexentry.getColLong(1);
}
public synchronized int size() {
return index.size();
}
public synchronized CloneableIterator<byte[]> keys(final boolean up, final byte[] firstKey) throws IOException {
return index.keys(up, firstKey);
}
public synchronized CloneableIterator<Row.Entry> rows(final boolean up, final byte[] firstKey) throws IOException {
return index.rows(up, firstKey);
}
public synchronized void close() {
index.close();
index = null;
}
private static class entry {
public byte[] key;
public int l;
public entry(final byte[] key, final int l) {
this.key = key;
this.l = l;
}
}
private static final entry poisonEntry = new entry(new byte[0], 0);
/**
* this method creates a concurrent thread that can take entries that are used to initialize the map
* it should be used when a bytesLongMap is initialized when a file is read. Concurrency of FileIO and
* map creation will speed up the initialization process.
* @param keylength
* @param objectOrder
* @param space
* @param bufferSize
* @return
*/
public static initDataConsumer asynchronusInitializer(final int keylength, final ByteOrder objectOrder, final int space, int bufferSize) {
initDataConsumer initializer = new initDataConsumer(new IntegerHandleIndex(keylength, objectOrder, space), bufferSize);
ExecutorService service = Executors.newSingleThreadExecutor();
initializer.setResult(service.submit(initializer));
service.shutdown();
return initializer;
}
public static class initDataConsumer implements Callable<IntegerHandleIndex> {
private BlockingQueue<entry> cache;
private IntegerHandleIndex map;
private Future<IntegerHandleIndex> result;
private boolean sortAtEnd;
public initDataConsumer(IntegerHandleIndex map, int bufferCount) {
this.map = map;
cache = new ArrayBlockingQueue<entry>(bufferCount);
sortAtEnd = false;
}
protected void setResult(Future<IntegerHandleIndex> result) {
this.result = result;
}
/**
* hand over another entry that shall be inserted into the BytesLongMap with an addl method
* @param key
* @param l
*/
public void consume(final byte[] key, final int l) {
try {
cache.put(new entry(key, l));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
/**
* to signal the initialization thread that no more entries will be sublitted with consumer()
* this method must be called. The process will not terminate if this is not called before.
*/
public void finish(boolean sortAtEnd) {
this.sortAtEnd = sortAtEnd;
try {
cache.put(poisonEntry);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
/**
* this must be called after a finish() was called. this method blocks until all entries
* had been processed, and the content was sorted. It returns the kelondroBytesLongMap
* that the user wanted to initialize
* @return
* @throws InterruptedException
* @throws ExecutionException
*/
public IntegerHandleIndex result() throws InterruptedException, ExecutionException {
return this.result.get();
}
public IntegerHandleIndex call() throws IOException {
try {
entry c;
while ((c = cache.take()) != poisonEntry) {
map.putUnique(c.key, c.l);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
if (sortAtEnd && map.index instanceof ObjectIndexCache) {
((ObjectIndexCache) map.index).finishInitialization();
}
return map;
}
}
public static void main(String[] args) {
int count = (args.length == 0) ? 100000 : Integer.parseInt(args[0]);
IntegerHandleIndex idx = new IntegerHandleIndex(12, Base64Order.enhancedCoder, 100000);
Random r = new Random(0);
long start = System.currentTimeMillis();
try {
for (int i = 0; i < count; i++) {
idx.inc(FlatWordPartitionScheme.positionToHash(r.nextInt(count / 32)).getBytes(), 1);
}
} catch (IOException e) {
e.printStackTrace();
}
System.out.println("Result: " + (((long) count) * 1000L / (System.currentTimeMillis() - start)) + " inc per second; " + count + " loops.");
}
}