// serverProcessor.java // (C) 2008 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany // first published 27.02.2008 on http://yacy.net // // $LastChangedDate: 2006-04-02 22:40:07 +0200 (So, 02 Apr 2006) $ // $LastChangedRevision: 1986 $ // $LastChangedBy: orbiter $ // // LICENSE // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA package de.anomic.server; import java.lang.reflect.InvocationTargetException; import java.util.ArrayList; import java.util.Iterator; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.TimeUnit; import de.anomic.server.logging.serverLog; public class serverProcessor { public static final int availableCPU = Runtime.getRuntime().availableProcessors(); public static int useCPU = availableCPU; private static final ArrayList> processMonitor = new ArrayList>(); private ExecutorService executor; private BlockingQueue input; private serverProcessor output; private int poolsize; private Object environment; private String processName, methodName, description; private String[] childs; private long blockTime, execTime, passOnTime; private long execCount; public serverProcessor( String name, String description, String[] childnames, final Object env, final String jobExecMethod, final int inputQueueSize, final serverProcessor output, final int poolsize) { // start a fixed number of executors that handle entries in the process queue this.environment = env; this.processName = name; this.description = description; this.methodName = jobExecMethod; this.childs = childnames; this.input = new LinkedBlockingQueue(inputQueueSize); this.output = output; this.poolsize = poolsize; this.executor = Executors.newCachedThreadPool(new NamePrefixThreadFactory(jobExecMethod)); for (int i = 0; i < poolsize; i++) { this.executor.submit(new serverInstantBlockingThread(env, jobExecMethod, this)); } // init statistics blockTime = 0; execTime = 0; passOnTime = 0; execCount = 0; // store this object for easy monitoring processMonitor.add(this); } public int queueSize() { return this.input.size(); } public int queueSizeMax() { return this.input.size() + this.input.remainingCapacity(); } public int concurrency() { return this.poolsize; } public J take() throws InterruptedException { // read from the input queue if (this.input == null) return null; long t = System.currentTimeMillis(); J j = this.input.take(); this.blockTime += System.currentTimeMillis() - t; return j; } public void passOn(J next) throws InterruptedException { // don't mix this method up with enQueue()! // this method enqueues into the _next_ queue, not this queue! if (this.output == null) return; long t = System.currentTimeMillis(); this.output.enQueue(next); this.passOnTime += System.currentTimeMillis() - t; } public void clear() { if (this.input != null) this.input.clear(); } public synchronized void relaxCapacity() { if (this.input.size() == 0) return; if (this.input.remainingCapacity() > 1000) return; BlockingQueue i = new LinkedBlockingQueue(); J e; while (this.input.size() > 0) { e = this.input.poll(); if (e == null) break; i.add(e); } this.input = i; } @SuppressWarnings("unchecked") public void enQueue(final J in) throws InterruptedException { // ensure that enough job executors are running if ((this.input == null) || (executor == null) || (executor.isShutdown()) || (executor.isTerminated())) { // execute serialized without extra thread serverLog.logWarning("PROCESSOR", "executing job " + environment.getClass().getName() + "." + methodName + " serialized"); try { final J out = (J) serverInstantBlockingThread.execMethod(this.environment, this.methodName).invoke(environment, new Object[]{in}); if ((out != null) && (output != null)) output.enQueue(out); } catch (final IllegalArgumentException e) { e.printStackTrace(); } catch (final IllegalAccessException e) { e.printStackTrace(); } catch (final InvocationTargetException e) { e.printStackTrace(); } return; } // execute concurrent in thread this.input.put(in); } @SuppressWarnings("unchecked") public void announceShutdown() { if (executor == null) return; if (executor.isShutdown()) return; // before we put pills into the queue, make sure that they will take them relaxCapacity(); // put poison pills into the queue for (int i = 0; i < poolsize; i++) { try { serverLog.logInfo("serverProcessor", "putting poison pill in queue " + this.processName + ", thread " + i); input.put((J) serverProcessorJob.poisonPill); // put a poison pill into the queue which will kill the job serverLog.logInfo("serverProcessor", ".. poison pill is in queue " + this.processName + ", thread " + i + ". awaiting termination"); } catch (final InterruptedException e) { } } } public void awaitShutdown(final long millisTimeout) { if (executor != null & !executor.isShutdown()) { // wait for shutdown try { executor.shutdown(); executor.awaitTermination(millisTimeout, TimeUnit.MILLISECONDS); } catch (final InterruptedException e) {} } serverLog.logInfo("serverProcessor", "queue " + this.processName + ": shutdown."); this.executor = null; this.input = null; // remove entry from monitor Iterator> i = processes(); serverProcessor p; while (i.hasNext()) { p = i.next(); if (p == this) { i.remove(); break; } } } public static Iterator> processes() { return processMonitor.iterator(); } protected void increaseJobTime(long time) { this.execTime += time; this.execCount++; } public String getName() { return this.processName; } public String getDescription() { return this.description; } public String getChilds() { StringBuilder s = new StringBuilder(); for (int i = 0; i < this.childs.length; i++) { s.append(this.childs[i]); s.append(' '); } return s.toString(); } /** * the block time is the time that a take() blocks until it gets a value * @return */ public long getBlockTime() { return blockTime; } /** * the exec time is the complete time of the execution and processing of the value from take() * @return */ public long getExecTime() { return execTime; } public long getExecCount() { return execCount; } /** * the passOn time is the time that a put() takes to enqueue a result value to the next queue * in case that the target queue is limited and may be full, this value may increase * @return */ public long getPassOnTime() { return passOnTime; } }