
What is SQL?

SQL, which stands for Structured Query Language, is a way to interact with relational
databases and tables in a way that allows us humans to glean specific, meaningful
information.

There are many “flavors” of SQL, but for our mystery we’ll be using SQLite, which you
can download here. We also recommend downloading SQLiteStudio, which is a good
graphical interface to use to inspect your data and write queries.

What is a SQLite database file and how to import it?

In SQLite, a .db file, otherwise known as a database file, is a collection of tables, which
are exactly like the tables you might already have dealt with in the past in programs
such as Microsoft Excel or Google Sheets. Within a table, each row records a data
point and each column contains a specific type of data.

To load in our database file, open SQLiteStudio, click “Database” and then “Add a
database”:

Locate the sql-murder-mystery.db file, give it a name and hit “OK”:

https://www.sqlite.org/index.html
https://www.sqlite.org/download.html
https://sqlitestudio.pl/index.rvt

Double click on the database to see its content:

Double click on a table and click “Data” to inspect a table:

What is an ERD?

ERD, which stands for Entity Relationship Diagram, is a visual representation of the
relationships among all relevant tables within a database. You can find the ERD for our
SQL Murder Mystery database below. The diagram shows that each table has a name
(top of the box, in bold), a list of column names (on the left) and their corresponding
data types (on the right, in all caps), all of which should correctly match what you see
in SQLiteStudio.

There are also some gold key icons, blue arrow icons and gray arrows on the ERD. A
gold key indicates that the column is the primary key of the corresponding table, and
a blue arrow indicates that the column is the foreign key of the corresponding table.

Primary Key: a unique identifier for each row in a table.
Foreign Key: used to reference data in one table to those in another table.

If two tables are related, the matching columns, i.e. the common identifiers of the two
tables, are connected by a gray arrow in the diagram.

(Powered by DbVisualizer)

What is a query?

If you take a look at the tables you just imported in SQLiteStudio, you will see that the
tables are huge! There are so many data points, and it simply isn’t possible to go

https://www.dbvis.com/

through the tables row by row to find the information we need. What are we supposed
to do?

This is where queries come in. Queries are statements we construct to grab specific
rows of table(s) that match a set of criteria. Queries read like natural English (for the
most part). For example:

SELECT name FROM person;

The query above SELECTs the name column FROM the person table, and the
semicolon (;) indicates that it is the end of the query.

In SQLiteStudio, click this () icon to open SQL editor, write your queries in the top

field and click this () icon to run the queries.

What elements does a SQL query have?

A SQL query can contain:
● SQL keywords (like the SELECT and FROM above),
● Column names (like the name column above),
● Table names (like the person table above),
● Wildcards,
● Functions,
● Specific filtering criteria,
● Etc.

SQL Keywords and Wildcards

SQL keywords are used to specify actions in your queries. SQL keywords are not case
sensitive, but we suggest using all caps for SQL keywords so that you can easily set
them apart from the rest of the query. Some frequently used keywords are:

SELECT

SELECT allows us to grab columns from the database:
● * (asterisk): it is used after SELECT to grab all columns from the table;

● column_name(s): to select specific columns, put the names of the columns after
SELECT and use commas to separate them.

FROM

FROM allows us to specify which table(s) we care about; to select multiple tables, list
the table names and use commas to separate them.

WHERE

The WHERE clause in a query is used to filter results by specific criteria. For example:

SELECT * FROM person WHERE name = “Kinsey Erickson”;

The query above SELECTs all columns (*) FROM the person table WHERE the name of
the person is “Kinsey Erickson”.

The AND keyword is used to string together multiple filtering criteria so that the filtered
results meet each and every one of the criterion. For example:

SELECT * FROM crime_scene_report WHERE type = "theft" AND city =

"Chicago";

The above query will select all the thefts that took place in Chicago from the
crime_scene_report table.

If you only need the filtered results to satisfy at least one of the criteria, use OR to string
the criteria together. For example:

SELECT * FROM crime_scene_report WHERE city = "Seattle" OR city

= "Baltimore";

The above query will select all the crimes that took place in either Seattle or Baltimore
from the crime_scene_report table.

In the WHERE clause, there are 3 commonly used operators:

● =
The equal sign (=) indicates that results have to match the exact value
specified.

● BETWEEN … AND …

The BETWEEN operator and the AND keyword is used to specify a range.

SELECT * FROM person WHERE address_street_name =

"Northwestern Dr" AND address_number BETWEEN 100 AND 1000;

The query above will select all the columns for people from the person table
whose street name is “Northwestern Dr” and address number is BETWEEN 100
AND 1000.

● LIKE

To search for a pattern, use the LIKE operator with either the percentage(%)
and/or the underscore (_) wildcards, which act as placeholders:

SELECT * FROM person WHERE address_street_name LIKE

"Northwestern%";

The query above will select all the columns for people from the person table
whose street name starts with the word “Northwestern”. The table below from
w3schools.com explains how the LIKE operator works with % and _ wildcards
in different circumstances:

(source: https://www.w3schools.com/sql/sql_like.asp)

SQL Aggregate Functions

Sometimes the questions you want to ask aren’t as simple as finding the row of data
that fits a set of criteria. You may want to ask more complex questions such as “Who
is the oldest person?” or “Who is the shortest person?” Aggregate functions can help
you answer these questions.

Try running the following query:

SELECT id, age FROM drivers_license;

https://www.w3schools.com/sql/sql_like.asp

The results are what you’d expect - a list of ids and the corresponding ages of people
listed in the drivers_license table.

Now try:

SELECT id, MAX(age) FROM drivers_license;

You should get a single row as an output, which will be the row containing the
maximum age found in the table. Here are some other aggregate functions you can try:

● MIN: finds the minimum value
● SUM: calculates the sum of the specified column values
● AVG: calculates the average of the specified column values
● COUNT: counts the number of specified column values

There are a few other helpful keywords that often are used in conjunction with
aggregate functions. Try the following query:

SELECT id, height FROM drivers_license ORDER BY height;

You’ll notice that the output was ordered, starting with the shortest. You can also go
highest to lowest:

SELECT id, height FROM drivers_license ORDER BY height DESC;

Now try this query:

SELECT age, COUNT(age) FROM drivers_license GROUP BY age;

Here, we’ve used the GROUP BY keyword to show us how many people of each age
exist in the table. You can even have the above query show you the results from oldest
to youngest by adding on the ORDER BY height DESC command at the end, just as
we did in a previous query.

SQL JOINs

Until now, we’ve been asking questions that can be answered by considering data
from only a single table. But what if we need to ask more complex questions that
simultaneously require data from two different tables? That’s where JOIN comes in.

The graph below from w3schools.com illustrates and explains 4 types of JOINs:

(source: https://www.w3schools.com/sql/sql_join.asp)

Here’s an example of INNER JOIN:
SELECT person.name, drivers_license.age FROM drivers_license
JOIN person ON drivers_license.id = person.license_id;
If you run this query in SQLiteStudio, you should see a table with 2 columns, name and
age.

Let’s break it down:
Step 1:

SELECT person.name, drivers_license.age

Just like the queries we wrote before, put the names of the columns you want to see
after the SELECT keyword. Since there are more than one table, make sure to specify
the table name for each column name, in table_name.column_name format. In the
example above, we want to see the name column from the person table and the age
column from the drivers_license table.

Step 2:

SELECT person.name, drivers_license.age FROM drivers_license
JOIN person

Recall that the FROM keyword is used to specify which tables you want the information
from. There are four types of JOIN keywords we can use to join two tables together, as
shown in the graph above: (INNER) JOIN / LEFT (OUTER) JOIN / RIGHT
(OUTER) JOIN / FULL (OUTER) JOIN. Note that the words in the parentheses are
optional. In the example above, we are performing an (INNER) JOIN of the
drivers_license table and the person table.

https://www.w3schools.com/sql/sql_join.asp

Step 3:

SELECT person.name, drivers_license.age FROM drivers_license
JOIN person ON drivers_license.id = person.license_id;

In order for two tables to be joined together, they must contain matching columns with
common identifiers. From the ERD diagram, we know that the id column in
drivers_license table is “connected” to the license_id column in the person
table. After the ON keyword, we always specify through which matching columns can
the two tables be joined together.

Step 4:

SELECT person.name, drivers_license.age FROM drivers_license
JOIN person ON drivers_license.id = person.license_id WHERE …;

Write the filtering criteria as you normally would in the WHERE clause.

In sum, the general structure of a JOIN query is:

SELECT table_name_1.column_name, … table_name_2.column_name FROM
table_name_1 (INNER) JOIN / LEFT (OUTER) JOIN / RIGHT (OUTER)
JOIN / FULL (OUTER) JOIN table_name_2 ON
table_name_1.matching_column_1 = table_name_2.matching_column_2;

A bit confused? Check out more examples on Tutorialspoint or W3Schools.

https://www.tutorialspoint.com/sql/index.htm
https://www.w3schools.com/sql/default.asp

